SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: RING finger domain

170

Cullin E3 ligases are the largest family of ubiquitin ligases with diverse cellular functions. One of seven cullin proteins serves as a scaffold protein for the assembly of the multisubunit ubiquitin ligase complex. Cullin binds the RING domain protein Rbx1/Rbx2 via its C-terminus and a cullin-specific substrate adaptor protein via its N-terminus. In the Cul3 ubiquitin ligase complex, Cul3 substrate receptors contain a BTB/POZ domain. Several studies have established that Cul3-based E3 ubiquitin ligases exist in a dimeric state which is required for binding of a number of substrates and has been suggested to promote ubiquitin transfer. In two different models, Cul3 has been proposed to dimerize either via BTB/POZ domain dependent substrate receptor homodimerization or via direct interaction between two Cul3 proteins that is mediated by Nedd8 modification of one of the dimerization partners. In this study, we show that the majority of the Cul3 proteins in cells exist as dimers or multimers and that Cul3 self-association is mediated via the Cul3 N-terminus while the Cul3 C-terminus is not required. Furthermore, we show that Cul3 self-association is independent of its modification with Nedd8. Our results provide evidence for BTB substrate receptor dependent Cul3 dimerization which is likely to play an important role in promoting substrate ubiquitination.

Concepts: RING finger domain, Proteins, Dimer, SCF complex, Ubiquitin, Enzyme, Protein, Ubiquitin ligase

27

Interpreting variants of uncertain significance (VUS) is a central challenge in medical genetics. One approach is to experimentally measure the functional consequences of VUS, but to date this approach has been post hoc and low-throughput. Here we use massively parallel assays to measure the effects of nearly 2,000 missense substitutions in the RING domain of BRCA1 on its E3 ubiquitin ligase activity and its binding to the BARD1 RING domain. From the resulting scores, we generate a model to predict the capacities of full-length BRCA1 variants to support homology-directed DNA repair, the essential role of BRCA1 in tumor suppression, and show that it outperforms widely used biological-effect prediction algorithms. We envision that massively parallel functional assays may facilitate the prospective interpretation of variants observed in clinical sequencing.

Concepts: Proteasome, Scientific method, Hypothesis, DNA repair, Ubiquitin, Ubiquitin ligase, BRCA1, RING finger domain

3

The SUMO-targeted ubiquitin ligase RNF4 functions at the crossroads of the SUMO and ubiquitin systems. Here, we report that the deubiquitylation enzyme (DUB) ataxin-3 counteracts RNF4 activity during the DNA double-strand break (DSB) response. We find that ataxin-3 negatively regulates ubiquitylation of the checkpoint mediator MDC1, a known RNF4 substrate. Loss of ataxin-3 markedly decreases the chromatin dwell time of MDC1 at DSBs, which can be fully reversed by co-depletion of RNF4. Ataxin-3 is recruited to DSBs in a SUMOylation-dependent fashion, and in vitro it directly interacts with and is stimulated by recombinant SUMO, defining a SUMO-dependent mechanism for DUB activity toward MDC1. Loss of ataxin-3 results in reduced DNA damage-induced ubiquitylation due to impaired MDC1-dependent recruitment of the ubiquitin ligases RNF8 and RNF168, and reduced recruitment of 53BP1 and BRCA1. Finally, ataxin-3 is required for efficient MDC1-dependent DSB repair by non-homologous end-joining and homologous recombination. Consequently, loss of ataxin-3 sensitizes cells to ionizing radiation and poly(ADP-ribose) polymerase inhibitor. We propose that the opposing activities of RNF4 and ataxin-3 consolidate robust MDC1-dependent signaling and repair of DSBs.

Concepts: Proteasome, Homologous recombination, Ubiquitin, Ubiquitin ligase, DNA repair, Enzyme, RING finger domain, DNA

3

TRIM E3 ubiquitin ligases regulate a wide variety of cellular processes and are particularly important during innate immune signalling events. They are characterized by a conserved tripartite motif in their N-terminal portion which comprises a canonical RING domain, one or two B-box domains and a coiled-coil region that mediates ligase dimerization. Self-association via the coiled-coil has been suggested to be crucial for catalytic activity of TRIMs; however, the precise molecular mechanism underlying this observation remains elusive. Here, we provide a detailed characterization of the TRIM ligases TRIM25 and TRIM32 and show how their oligomeric state is linked to catalytic activity. The crystal structure of a complex between the TRIM25 RING domain and an ubiquitin-loaded E2 identifies the structural and mechanistic features that promote a closed E2~Ub conformation to activate the thioester for ubiquitin transfer allowing us to propose a model for the regulation of activity in the full-length protein. Our data reveal an unexpected diversity in the self-association mechanism of TRIMs that might be crucial for their biological function.

Concepts: Posttranslational modification, DNA, Function, RING finger domain, Ubiquitin, Protein, Ubiquitin ligase, Enzyme

2

Activation of NF-κB transcription factor is strictly regulated to prevent excessive inflammatory responses leading to immunopathology. However, it still remains unclear how NF-κB activation is negatively controlled. The PDZ-LIM domain-containing protein PDLIM2 is a nuclear ubiquitin E3 ligase targeting the p65 subunit of NF-κB for degradation, thus terminating NF-κB-mediated inflammation. Using yeast two-hybrid screening, we sought to isolate PDLIM2-interacting proteins that are critical for suppressing NF-κB signaling. Here we identified MKRN2, a RING finger domain-containing protein that belongs to the makorin ring finger protein gene family, as a novel p65 ubiquitin E3 ligase. MKRN2 bound to p65 and promoted the polyubiquitination and proteasome-dependent degradation of p65 through the MKRN2 RING finger domain, thereby suppressing p65-mediated NF-κB transactivation. Notably, MKRN2 and PDLIM2 synergistically promote polyubiquitination and degradation of p65. Consistently, MKRN2 knockdown in dendritic cells resulted in larger amounts of nuclear p65 and augmented production of proinflammatory cytokines in responses to innate stimuli. These results delineate a novel role of MKRN2 in negatively regulating NF-κB-mediated inflammatory responses, cooperatively with PDLIM2.

Concepts: Cell biology, Inflammation, Enzyme, RING finger domain, Gene, Molecular biology, Two-hybrid screening, Protein

2

Although evidence that splicing regulates DNA repair is accumulating, the underlying mechanism(s) remain unclear. Here, we report that short-term inhibition of pre-mRNA splicing by spliceosomal inhibitors impairs cellular repair of DNA double-strand breaks. Indeed, interference with splicing as little as 1 h prior to irradiation reduced ubiquitylation of damaged chromatin and impaired recruitment of the repair factors WRAP53β, RNF168, 53BP1, BRCA1 and RAD51 to sites of DNA damage. Consequently, splicing-deficient cells exhibited significant numbers of residual γH2AX foci, as would be expected if DNA repair is defective. Furthermore, we show that this is due to downregulation of the E3 ubiquitin ligase RNF8 and that re-introduction of this protein into splicing-deficient cells restores ubiquitylation at sites of DNA damage, accumulation of downstream factors and subsequent repair. Moreover, downregulation of RNF8 explains the defective repair associated with knockdown of various splicing factors in recent genome-wide siRNA screens and, significantly, overexpression of RNF8 counteracts this defect. These discoveries reveal a mechanism that may not only explain how splicing regulates repair of double-strand breaks, but also may underlie various diseases caused by deregulation of splicing factors, including cancer.Cell Death and Differentiation advance online publication, 17 June 2016; doi:10.1038/cdd.2016.58.

Concepts: Histone, Ubiquitin ligase, Protein, RING finger domain, Gene, Gene expression, DNA repair, DNA

2

The COP9-Signalosome (CSN) regulates cullin-RING ubiquitin ligase (CRL) activity and assembly by cleaving Nedd8 from cullins. Free CSN is autoinhibited, and it remains unclear how it becomes activated. We combine structural and kinetic analyses to identify mechanisms that contribute to CSN activation and Nedd8 deconjugation. Both CSN and neddylated substrate undergo large conformational changes upon binding, with important roles played by the N-terminal domains of Csn2 and Csn4 and the RING domain of Rbx1 in enabling formation of a high affinity, fully active complex. The RING domain is crucial for deneddylation, and works in part through conformational changes involving insert-2 of Csn6. Nedd8 deconjugation and re-engagement of the active site zinc by the autoinhibitory Csn5 glutamate-104 diminish affinity for Cul1/Rbx1 by ~100-fold, resulting in its rapid ejection from the active site. Together, these mechanisms enable a dynamic deneddylation-disassembly cycle that promotes rapid remodeling of the cellular CRL network.

Concepts: Posttranslational modification, RING finger domain, Ubiquitin, Ubiquitin ligase, Enzyme

2

DNMT1 is recruited by PCNA and UHRF1 to maintain DNA methylation after replication. UHRF1 recognizes hemimethylated DNA substrates via the SRA domain, but also repressive H3K9me3 histone marks with its TTD. With systematic mutagenesis and functional assays, we could show that chromatin binding further involved UHRF1 PHD binding to unmodified H3R2. These complementation assays clearly demonstrated that the ubiquitin ligase activity of the UHRF1 RING domain is required for maintenance DNA methylation. Mass spectrometry of UHRF1-deficient cells revealed H3K18 as a novel ubiquitination target of UHRF1 in mammalian cells. With bioinformatics and mutational analyses, we identified a ubiquitin interacting motif (UIM) in the N-terminal regulatory domain of DNMT1 that binds to ubiquitinated H3 tails and is essential for DNA methylation in vivo. H3 ubiquitination and subsequent DNA methylation required UHRF1 PHD binding to H3R2. These results show the manifold regulatory mechanisms controlling DNMT1 activity that require the reading and writing of epigenetic marks by UHRF1 and illustrate the multifaceted interplay between DNA and histone modifications. The identification and functional characterization of the DNMT1 UIM suggests a novel regulatory principle and we speculate that histone H2AK119 ubiquitination might also lead to UIM-dependent recruitment of DNMT1 and DNA methylation beyond classic maintenance.Cell Research advance online publication 12 June 2015; doi:10.1038/cr.2015.72.

Concepts: Epigenetics, Nucleosome, RING finger domain, Ubiquitin ligase, Ubiquitin, Posttranslational modification, DNA, Histone

2

Mutations in the Parkin gene are responsible for an autosomal recessive form of Parkinson’s disease. The parkin protein is a RING-In-Between-RING (RBR) E3 ubiquitin ligase, which exhibits low basal activity. Here, we describe the crystal structure of full-length parkin. The structure shows parkin in an auto-inhibited state and provides insight into how it is activated. RING0 occludes the ubiquitin acceptor site Cys431 in RING2, whereas a repressor element of parkin (REP) binds RING1 and blocks its E2-binding site. Mutations that disrupted these inhibitory interactions activated parkin both in vitro and in cells. Parkin is neuroprotective and these findings may provide a structural and mechanistic framework for enhancing parkin activity.

Concepts: EC 6.3, Ubiquitin-conjugating enzyme, Proteasome, Ubiquitin, Ubiquitin ligase, DNA, RING finger domain, Parkinson's disease

2

Ubiquitin modification is mediated by a large family of specificity determining ubiquitin E3 ligases. To facilitate ubiquitin transfer, RING E3 ligases bind both substrate and a ubiquitin E2 conjugating enzyme linked to ubiquitin via a thioester bond, but the mechanism of transfer has remained elusive. Here we report the crystal structure of the dimeric RING domain of rat RNF4 in complex with E2 (UbcH5A) linked by an isopeptide bond to ubiquitin. While the E2 contacts a single protomer of the RING, ubiquitin is folded back onto the E2 by contacts from both RING protomers. The carboxy-terminal tail of ubiquitin is locked into an active site groove on the E2 by an intricate network of interactions, resulting in changes at the E2 active site. This arrangement is primed for catalysis as it can deprotonate the incoming substrate lysine residue and stabilize the consequent tetrahedral transition-state intermediate.

Concepts: Ligase, Crystal, Ubiquitin, Posttranslational modification, Ubiquitin ligase, Protein, RING finger domain, Enzyme