Discover the most talked about and latest scientific content & concepts.

Concept: Ricin


Mucins are the main components of the gastrointestinal mucus layer. Mucin glycosylation is critical to most intermolecular and intercellular interactions. However, due to the highly complex and heterogeneous mucin glycan structures, the encoded biological information remains largely encrypted. Here we have developed a methodology based on force spectroscopy to identify biologically accessible glycoepitopes in purified porcine gastric mucin (pPGM) and purified porcine jejunal mucin (pPJM). The binding specificity of lectins Ricinus communis agglutinin I (RCA), peanut (Arachis hypogaea) agglutinin (PNA), Maackia amurensis lectin II (MALII), and Ulex europaeus agglutinin I (UEA) was utilized in force spectroscopy measurements to quantify the affinity and spatial distribution of their cognate sugars at the molecular scale. Binding energy of 4, 1.6, and 26 aJ was determined on pPGM for RCA, PNA, and UEA. Binding was abolished by competition with free ligands, demonstrating the validity of the affinity data. The distributions of the nearest binding site separations estimated the number of binding sites in a 200-nm mucin segment to be 4 for RCA, PNA, and UEA, and 1.8 for MALII. Binding site separations were affected by partial defucosylation of pPGM. Furthermore, we showed that this new approach can resolve differences between gastric and jejunum mucins.-Gunning, A. P., Kirby, A. R., Fuell, C., Pin, C., Tailford L. E., Juge, N. Mining the “glycocode”-exploring the spatial distribution of glycans in gastrointestinal mucin using force spectroscopy.

Concepts: DNA, Proteins, Mass, Ricin, Peanut, Faboideae, Glycomics, Ulex europaeus


Ricin toxin (RT) is the second most lethal toxin known; it has been designated by the CDC as a select agent. RT is made by the castor bean plant; an estimated 50,000 tons of RT are produced annually as a by-product of castor oil. RT has two subunits, a ribotoxic A chain (RTA) and galactose-binding B chain (RTB). RT binds to all mammalian cells and once internalized, a single RTA catalytically inactivates all of the ribosomes in a cell. Administered as an aerosol, RT causes rapid lung damage and fibrosis followed by death. There are no Food and Drug Administration-approved vaccines and treatments are only effective in the first few hours after exposure. We have developed a recombinant RTA vaccine that has two mutations V76M/Y80A (RiVax). The protein is expressed in Escherichia coli and is nontoxic and immunogenic in mice, rabbits, and humans. When vaccinated mice are challenged with injected, aerosolized, or orally administered (gavaged) RT, they are completely protected. We have now developed a thermostable, aluminum-adjuvant-containing formulation of RiVax and tested it in rhesus macaques. After three injections, the animals developed antibodies that completely protected them from a lethal dose of aerosolized RT. These antibodies neutralized RT and competed to varying degrees with a panel of neutralizing and nonneutralizing mouse monoclonal antibodies known to recognize specific epitopes on native RTA. The resulting antibody competition profile could represent an immunologic signature of protection. Importantly, the same signature was observed using sera from RiVax-immunized humans.

Concepts: Immune system, Antibody, Protein, Immunology, Escherichia coli, Castor oil plant, Ricin, Castor oil


Bioenergy production combined with phytoremediation has been suggested to help in solving two critical world problems: the gradual reduction of fossil fuels and soil contamination. The aim of this research was to investigate the potential for the use of Ricinus communis L. (castor oil plant) as an energy crop and plant species to remediate metal-polluted sites. This study was performed in mine tailings containing high concentrations of Cu, Zn, Mn, Pb and Cd. Physico-chemical characterization, total, DTPA-extractable and water-soluble metals in rhizospheric tailings heap samples were carried. Metal concentrations in plant tissues and translocation factors (TFs) were also determined. The Ricinus seed-oil content was high between 41 and 64%, seeds from San Francisco site 6 had the highest oil content, while these from site 7 had the lowest. No trend between oil yield vs seed origin site was observed. Seed-oil content was negatively correlated with root concentration of Cu, Zn, Pb and Cd, but no correlation was observed with the extractable-metals. According to its shoot metal concentrations and TFs, castor bean is not a metal accumulator plant. This primary colonizing plant is well suited to cope with the local toxic conditions and can be useful for the stabilization of these residues, and for then decreasing metal bioavailability, dispersion and human health risks on these barren tailings heaps and in the surrounding area. Our work is the first report regarding combined oil production and a phytostabilization role for Ricinus plants in metal mine tailings and may give a new value to suitable metal-polluted areas.

Concepts: Castor oil plant, Ricin, Euphorbiaceae, Acalypheae


OBJECTIVE: In immunotherapy of HPV-16-associated cervical cancers, the E7 protein is considered as a prime candidate. However, it is a poor inducer of a cytotoxic T-cell response when used as a singular antigen in protein vaccination. Therefore, to design effective cancer vaccines, the best tumor antigens should be combined with the most effective immunogens or drug delivery tools to achieve positive clinical results. In this study, we fused HPV-16 E7 with the lectin subunit of ricin toxin (RTB) from castor plant as a vaccine adjuvant/carrier. MATERIALS AND METHODS: After reaching the soluble form of the recombinant protein, we designed 2 preventive and inhibition tumor models for investigation of the prevention and rejection of TC-1 cell growth in female C57BL/6 mice, respectively. In each model, mice were immunized with the recombinant protein of E7-RTB or E7 without any adjuvant. RESULTS: We demonstrated that prophylactic immunization of E7-RTB protected mice against challenge from TC-1 cells. Also in the therapeutic model, E7-RTB could inhibit TC-1 tumor growth in the lung. The results were significant compared with the immunization of E7 singularly. CONCLUSIONS: We concluded that immunization with E7-RTB protein without any adjuvant could generate antitumor effects in mice challenged with TC-1 cells. This research verifies the clinical applications and the future prospects for development of HPV-16 E7 therapeutic vaccines fused to immunoadjuvants.

Concepts: Immune system, HPV vaccine, Vaccine, Vaccination, Immunology, Adaptive immune system, Antigen, Ricin


In this study, we used a mass spectrometry-based quantification approach employing isotopic (ICPL) and isobaric (iTRAQ) labeling to investigate the pattern of protein deposition during castor oil seed (Ricinus communis L.) development, including that of proteins involved in fatty acid metabolism, seed storage proteins, toxins and allergens. Additionally, we have used an off-line Hydrophilic Interaction Chromatography (HILIC) as a step of peptide fractionation preceding the Reverse Phase nanoLC coupled with a LTQ Orbitrap. We were able to identify a total of 1875 proteins and from these 1748 could be mapped to extant castor gene models, expanding considerably the number proteins so far identified from developing castor seeds. Cluster validation and statistical analysis resulted in 975 protein trend patterns and the relative abundance of 618 proteins. The results presented in this work give important insights into certain aspects of the biology of castor oil seed development such as carbon flow, anabolism and catabolism of fatty acid and the pattern of deposition of reserve proteins, toxins and allergens such as ricin and 2S albumins. We also found, for the first time, some genes of reserve proteins that are differentially expressed during seed development.

Concepts: Protein, Gene, Amino acid, Metabolism, Nutrition, Fat, Castor oil plant, Ricin


Context. Ingestions of the seed of the castor bean plant (Ricinus communis) carries the risk of toxicity from ricin, a potent inhibitor of protein synthesis. Objective. We sought to describe characteristics of castor bean seed exposures reported to a state-wide poison control system. Methods. This was an observational case series. A state-wide poison control system’s database was reviewed for exposures to castor bean plant seeds from 2001 to 2011. Case notes were reviewed and data collected, when available, included age, gender, circumstances surrounding exposure, number of castor beans consumed, whether beans were chewed or crushed, symptoms described, laboratory values (aspartate aminotransferase [AST], alanine aminotransferase [ALT], prothrombin time [PT] and international normalized ratio [INR]), duration of follow-up, treatment, and patient outcomes. Results. Eighty-four cases were identified. Ingestions were unintentional in 50 cases (59%) cases and intentional in 34 (40%) cases. A median of 10 seeds (range: 1-20) were ingested in intentional cases versus 1 seed (range: 1-40) in unintentional cases. In 49 (58%) of cases the seeds were reported to have been chewed or crushed. Gastrointestinal symptoms were the most commonly reported symptoms. Vomiting (n = 39), nausea (n = 24), diarrhea (n = 17), and abdominal pain (n = 16) predominated. One patient developed hematochezia and vomiting after reportedly ingesting and intravenously injecting castor bean seeds. Laboratory values were documented in 17 (20%) cases. Only one abnormality was noted; an asymptomatic patient one week following ingestion had AST/ALT of 93 U/L and 164 U/L, respectively. Ricinine was confirmed in the urine of two patients. Twenty-three (27%) cases received activated charcoal. Seventy-two (86%) of cases were calls from health care facilities or referred to health care facilities by the poison control center. Twenty-two (26%) cases were admitted for a median of 2 days (range: 1-10). Admitted cases ingested a median of 8.5 seeds (range: 1-20). Intentional ingestions were followed for median of 37.5 h (range: 0.5-285.5) while unintentional cases were followed for 14 h (range: 1-182). No delayed symptoms, serious outcomes, or deaths were reported. Discussion. Due to the presence of ricin, there is concern for serious outcomes after ingestions of the seeds of the castor bean plant. In this study GI symptoms were most commonly reported but serious morbidity or mortality was not present. The true risk of castor bean plant seed ingestions should continue to be re-evaluated. Conclusion. In this retrospective review, gastrointestinal symptoms were the most common symptoms described after reported exposures to castor bean seeds. These exposures were not associated with serious morbidity, mortality, or delayed symptoms.

Concepts: Ingestion, Alanine transaminase, Seed, Castor oil plant, Ricin, Euphorbiaceae, Acalypheae, Bean


Ricinus communis (castor plant) is a potent medicinal plant, which is commonly used in the treatment of various ailments. The present study was conducted to appraise the cytotoxicity and mutagenicity of R. communis along with antioxidant and antimicrobial activities. Cytotoxicity was evaluated by hemolytic and brine shrimp assays, whereas Ames test (TA98 and TA100) was used for mutagenicity evaluation. Plant different parts were extracted in methanol by shaking, sonication and Soxhlet extraction methods. The R. communis methanolic extracts showed promising antioxidant activity evaluated as through total phenolic contents (TPC), total flavonoid content (TFC), DPPH free radical inhibition, reducing power and inhibition of linoleic acid oxidation. R. communis seeds, stem, leaves, fruit and root methanolic extracts showed mild to moderate cytotoxicity against red blood cells (RBCs) of human and bovine. Brine shrimp lethality also revealed the cytotoxic nature of extracts with LC50 in the range of 0.22-3.70 (µg/mL) (shaking), 1.59-60.92 (µg/mL) (sonication) and 0.72-33.60 (µg/mL) (Soxhlet), whereas LC90 values were in the range of 345.42-1695.81, 660.50-14,794.40 and 641.62-15,047.80 µg/mL for shaking, sonication and Soxhlet extraction methods, respectively. R. communis methanolic extracts revealed mild mutagenicity against TA98 (range 1975 ± 67 to 2628 ± 79 revertant colonies) and TA100 (range 2773 ± 92 to 3461 ± 147 revertant colonies) strains and these values were 3267 ± 278 and 4720 ± 346 revertant colonies in case of TA98 and TA100 positive controls, respectively. R. communis methanolic extracts prevented the H2O2 and UV to Plasmid pBR322 DNA oxidative damage. Results revealed that R. communis is a potential source of bioactive compounds and in future studies the bioactive compounds will be identified by advanced spectroscopic techniques.

Concepts: Red blood cell, Redox, Oxidative stress, Radical, Castor oil plant, Ricin, Euphorbiaceae, Acalypheae


Castor plant is a fast-growing, perennial shrub from Euphorbiaceae family. More than 50% of the residue is generated from its stems and leaves. The main aim of this work is to study the pyrolytic characteristics, kinetics and thermodynamic properties of castor residue. The TGA experiments were carried out from room temperature to 900 °C under an inert atmosphere at different heating rates of 5, 10, 15, 20, 30 and 40 °C/min. The kinetic analysis was carried using different models namely Kissinger, Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS). The average Eɑ calculated by FWO and KAS methods were 167.10 and 165.86 kJ/mole respectively. Gibbs free energy varied from 150.62-154.33 to 150.59-154.65 kJ/mol for FWO and KAS respectively. The HHV of castor residue was 14.43 MJ/kg, considered as potential feedstock for bio-energy production. Kinetic and thermodynamic results will be useful input for the design of pyrolytic process using castor residue as feedstock.

Concepts: Energy, Thermodynamics, Entropy, Gibbs free energy, Internal energy, Castor oil plant, Ricin, Euphorbiaceae


The castor bean plant, Ricinus communis, is known to have allergenic and toxic properties. Castor bean allergy has been described mainly as an occupational inhalation allergy in laboratory workers, in persons working in oil processing mills or in agricultural industry. So far, only one case of anaphylactic reaction due to castor bean sensitization confirmed by specific IgE has been described in literature.

Concepts: Shock, Mast cell, Castor oil plant, Ricin, Euphorbiaceae, Acalypheae, Anaphylaxis, Allergen immunotherapy


Seeds are highly specific organs that strongly sink sucrose resources from leaf and stem tissues to trigger seed metabolism and development. In particular, for heterotrophic non-green seeds, the potential molecular mechanism underlying sucrose-driven seed development remains unanswered. Castor bean (Ricinus communis L.), a typical non-green seed, has been considered as a model plant for seed biology study in dicotyledonous plants due to its heterotrophic seeds with persistent endosperms. In the present study, the fast-developing castor bean seeds were treated with exogenous sucrose and mannitol for four hours. The global transcriptomic data were obtained by high-throughput RNA-seq technique, resulting in 468 differentially expressed genes (DGEs). Further analyses revealed that sucrose functioned as both metabolic substrates and signal molecules. Specifically, 73 DGEs involved in carbohydrate and nitrogen metabolism, 42 differentially expressed transcription factors, and 35 DGEs involved in diverse signaling pathways such as auxin, brassinosteroid, ethelyene, cytokinin, gibberellin, and calcium signals, were identified, suggesting that the sucrose signaling pathway might have complex and multi-connected cross-talks with other signals to regulate castor bean seed development. Taken together, this study provides novel data to improve understanding of the potential molecular mechanisms of sucrose in regulating non-green seed development and storage reservoir accumulation during seed development.

Concepts: DNA, Protein, Gene expression, Metabolism, Organism, Plant, Castor oil plant, Ricin