SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Reverse transcriptase

171

Education and diagnostic tests capable of early detection represent our most effective means of preventing transmission of human immunodeficiency virus (HIV). The importance of early detection is underlined by studies demonstrating increased life expectancy following early initiation of antiviral treatment. The Elecsys(®) HIV combi PT assay is a fourth-generation antigen-antibody combination assay developed to allow earlier detection of seroconversion, and to have increased sensitivity and improved specificity. We aimed to determine how early the assay could detect infection compared with existing assays; whether all HIV variants could be detected; and the assay’s specificity using samples from blood donors, routine specimens, and patients with potential cross-reacting factors. Samples were identified as positive by the Elecsys(®) assay 4.9 days after a positive polymerase chain reaction result (as determined by the panel supplier), which was earlier than the 5.3-7.1 days observed with comparators. The analytical sensitivity of the Elecsys(®) HIV combi PT assay for the HIV-1 p24 antigen was 1.05 IU/mL, which compares favorably with the comparator assays. In addition, the Elecsys(®) assay identified all screened HIV subtypes and displayed greater sensitivity to HIV-2 homologous antigen and antibodies to HIV-1 E and O and HIV-2 than the other assays. Overall, the specificity of the Elecsys(®) assay was 99.88 % using samples from blood donors and 99.81 % when analyzing unselected samples. Potential cross-reacting factors did not interfere with assay performance. The Elecsys(®) HIV combi PT assay is a sensitive and specific assay that has been granted the CE mark according to Directive 2009/886/EC.

Concepts: HIV, AIDS, Immune system, Infectious disease, Discovery and development of CCR5 receptor antagonists, Subtypes of HIV, Reverse transcriptase, Blood donation

171

Failure of antiretroviral regimens containing elvitegravir (EVG) and raltegravir (RAL) can result in the appearance of integrase inhibitor (INI) drug-resistance mutations (DRMs). While several INI DRMs have been identified, the evolution of EVG DRMs and the linkage of these DRMs with protease inhibitor (PI) and reverse transcriptase inhibitor (RTI) DRMs have not been studied at the clonal level. We examined the development of INI DRMs in 10 patients failing EVG-containing regimens over time, and the linkage of INI DRMs with PI and RTI DRMs in these patients plus 6 RAL-treated patients. A one-step RT-nested PCR protocol was used to generate a 2.7 kB amplicon that included the PR, RT, and IN coding region, and standard cloning and sequencing techniques were used to determine DRMs in 1,277 clones (mean 21 clones per time point). Results showed all patients had multiple PI, NRTI, and/or NNRTI DRMs at baseline, but no primary INI DRM. EVG-treated patients developed from 2 to 6 strains with different primary INI DRMs as early as 2 weeks after initiation of treatment, predominantly as single mutations. The prevalence of these strains fluctuated and new strains, and/or strains with new combinations of INI DRMs, developed over time. Final failure samples (weeks 14 to 48) typically showed a dominant strain with multiple mutations or N155H alone. Single N155H or multiple mutations were also observed in RAL-treated patients at virologic failure. All patient strains showed evidence of INI DRM co-located with single or multiple PI and/or RTI DRMs on the same viral strand. Our study shows that EVG treatment can select for a number of distinct INI-resistant strains whose prevalence fluctuates over time. Continued appearance of new INI DRMs after initial INI failure suggests a potent, highly dynamic selection of INI resistant strains that is unaffected by co-location with PI and RTI DRMs.

Concepts: Antiretroviral drug, HIV, Reverse transcriptase inhibitor, Reverse transcriptase, Zidovudine, Antiretroviral drugs, Integrase inhibitor, Integrase

170

Human immunodeficiency virus type 2 (HIV-2) is intrinsically resistant to non-nucleoside reverse transcriptase inhibitors and exhibits reduced susceptibility to several of the protease inhibitors used for antiretroviral therapy of HIV-1. Thus, there is a pressing need to identify new classes of antiretroviral agents that are active against HIV-2. Although recent data suggest that the integrase strand transfer inhibitors raltegravir and elvitegravir may be beneficial, mutations that are known to confer resistance to these drugs in HIV-1 have been reported in HIV-2 sequences from patients receiving raltegravir-containing regimens. To examine the phenotypic effects of mutations that emerge during raltegravir treatment, we constructed a panel of HIV-2 integrase variants using site-directed mutagenesis and measured the susceptibilities of the mutant strains to raltegravir and elvitegravir in culture. The effects of single and multiple amino acid changes on HIV-2 replication capacity were also evaluated. Our results demonstrate that secondary replacements in the integrase protein play key roles in the development of integrase inhibitor resistance in HIV-2. Collectively, our data define three major mutational pathways to high-level raltegravir and elvitegravir resistance: i) E92Q+Y143C or T97A+Y143C, ii) G140S+Q148R, and iii) E92Q+N155H. These findings preclude the sequential use of raltegravir and elvitegravir (or vice versa) for HIV-2 treatment and provide important information for clinical monitoring of integrase inhibitor resistance in HIV-2-infected individuals.

Concepts: Antiretroviral drug, HIV, AIDS, Reverse transcriptase inhibitor, Reverse transcriptase, Integrase inhibitor, Raltegravir, Integrase

169

Molecular biomarkers to determine the effectiveness of targeted therapies in cancer treatment have been widely adopted in colorectal cancer (CRC), but those to predict chemotherapy sensitivity remain poorly defined. We tested our hypothesis that KRAS mutation may be a predictor of oxaliplatin sensitivity in CRC. KRAS was knocked-down in KRAS-mutant CRC cells (DLD-1(G13D) and SW480(G12V)) by small interfering RNAs (siRNA) and overexpressed in KRAS-wild-type CRC cells (COLO320DM) by KRAS-mutant vectors to generate paired CRC cells. These paired CRC cells were tested by oxaliplatin, irinotecan and 5FU to determine the change in drug sensitivity by MTT assay and flow cytometry. Reasons for sensitivity alteration were further determined by western blot and real-time quantitative reverse transcriptase polymerase chain reaction (qRT -PCR). In KRAS-wild-type CRC cells (COLO320DM), KRAS overexpression by mutant vectors caused excision repair cross-complementation group 1 (ERCC1) downregulation in protein and mRNA levels, and enhanced oxaliplatin sensitivity. In contrast, in KRAS-mutant CRC cells (DLD-1(G13D) and SW480(G12V)), KRAS knocked-down by KRAS-siRNA led to ERCC1 upregulation and increased oxaliplatin resistance. The sensitivity of irinotecan and 5FU had not changed in the paired CRC cells. To validate ERCC1 as a predictor of sensitivity for oxaliplatin, ERCC1 was knocked-down by siRNA in KRAS-wild-type CRC cells, which restored oxaliplatin sensitivity. In contrast, ERCC1 was overexpressed by ERCC1-expressing vectors in KRAS-mutant CRC cells, and caused oxaliplatin resistance. Overall, our findings suggest that KRAS mutation is a predictor of oxaliplatin sensitivity in colon cancer cells by the mechanism of ERCC1 downregulation.

Concepts: DNA, Gene expression, Cancer, Polymerase chain reaction, Molecular biology, Colorectal cancer, DNA replication, Reverse transcriptase

169

BACKGROUND: Accurate interpretation of HIV drug resistance (HIVDR) testing is challenging, yet important for patient care. We compared genotyping interpretation, based on the Stanford University HIV Drug Resistance Database (Stanford HIVdb), and virtual phenotyping, based on the Janssen Diagnostics BVBA’s vircoTYPETM HIV-1, and investigated their level of agreement in antiretroviral (ARV) naive patients in Asia, where non-B subtypes predominate. METHODS: Sequences from 1301 ARV-naive patients enrolled in the TREAT Asia Studies to Evaluate Resistance – Monitoring Study (TASER-M) were analysed by both interpreting systems. Interpretations from both Stanford HIVdb and vircoTYPETM HIV-1 were initially grouped into 2 levels: susceptible and non-susceptible. Discrepancy was defined as a discordant result between the susceptible and non-susceptible interpretations from the two systems for the same ARV. Further analysis was performed when interpretations from both systems were categorised into 3 levels: susceptible, intermediate and resistant; whereby discrepancies could be categorised as major discrepancies and minor discrepancies. Major discrepancy was defined as having a susceptible result from one system and resistant from the other. Minor discrepancy corresponded to having an intermediate interpretation in one system, with a susceptible or resistant result in the other. The level of agreement was analysed using the prevalence adjusted bias adjusted kappa (PABAK). RESULTS: Overall, the agreement was high, with each ARV being in “almost perfect agreement”, using Landis and Koch’s categorisation. Highest discordance was observed for efavirenz (75/1301, 5.8 %), all arising from susceptible Stanford HIVdb versus non-susceptible vircoTYPETM HIV-1 predictions. Protease Inhibitors had highest level of concordance with PABAKs all above 0.99, followed by Nucleoside Reverse Transcriptase Inhibitors with PABAKs above 0.97 and non-NRTIs with the lowest PABAK of 0.88. The 68/75 patients with discordant efavirenz results harboured the V179D/E mutations compared to 7/1226 with no efavirenz discrepancy (p-value <0.001). In the 3-level comparison, all but one of the discrepancies was minor. CONCLUSIONS: The two systems agreed well with lowest concordance observed for efavirenz. When interpreting HIVDR, especially in non-B subtypes, clinical correlation is crucial, in particular when efavirenz resistance is interpreted based on V179D/E.

Concepts: Antiretroviral drug, HIV, Reverse transcriptase inhibitor, Phenotype, Subtypes of HIV, Reverse transcriptase, Interpretation, HIV Drug Resistance Database

168

Two integrases inhibitors, raltegravir and elvitegravir, have now been approved by regulatory agencies for use in the treatment of HIV-infected patients; and the approval of a third such drug, dolutegravir, is expected during 2013 on the basis of several phase 3 clinical trials. The advent of this new class of antiretroviral (ARV) medications represents a major advance in the management of HIV infection, and each of these three drugs can be expected to continue to be an important component of ARV combination regimens.

Concepts: Antiretroviral drug, HIV, Pharmacology, Reverse transcriptase, Retrovirus, Integrase inhibitor, Raltegravir, Integrase

144

Orf virus infection has been prevalent continuously in the population of wild Japanese serows (Capricornis crispus), goat-like grazing cloven-hoofed mammal species that live mainly in mountainous areas of Japan. Currently, definitive diagnosis of infection requires time-consuming laboratory work. To diagnose rapidly on-site, we developed a field-friendly procedure for the detection of orf virus from oral cavity lesions. DNA was extracted from goat saliva spiked with orf virus as a proxy for Japanese serows by a commercial kit without the use of electricity, and the quality of the extracted DNA was evaluated by conventional polymerase chain reaction (PCR). Extracted DNA was amenable to DNA amplification, the same as when extracted in a laboratory. Next, to find optimal conditions for DNA amplification by loop-mediated isothermal amplification (LAMP), Bst and Csa DNA polymerases and 3 colorimetric indicators for visual diagnosis, hydroxy naphthol blue (HNB), malachite green and D-QUICK, were compared using a portable cordless incubator. The combination of Bst or Csa DNA polymerase with HNB was found to be easiest for visual diagnosis by the naked eye, and viral DNA was successfully amplified from all orf virus strains used. These results suggest that the procedure established here can work completely on-site and can be useful for definitive diagnosis and differentiation of orf virus infection in Japanese serows in remote mountainous areas.

Concepts: DNA, Polymerase chain reaction, Enzyme, DNA replication, Reverse transcriptase, DNA polymerase, Polymerase, Primer

87

In 2014, the California Department of Public Health was notified by a local health department of a diagnosis of acute human immunodeficiency virus (HIV) infection* and rectal gonorrhea in a male adult film industry performer, aged 25 years (patient A). Patient A had a 6-day history of rash, fever, and sore throat suggestive of acute retroviral syndrome at the time of examination. He was informed of his positive HIV and gonorrhea test results 6 days after his examination. Patient A had a negative HIV-1 RNA qualitative nucleic acid amplification test (NAAT)(†) 10 days before symptom onset. This investigation found that during the 22 days between the negative NAAT and being informed of his positive HIV test results, two different production companies directed patient A to have condomless sex with a total of 12 male performers. Patient A also provided contact information for five male non-work-related sexual partners during the month before and after his symptom onset. Patient A had additional partners during this time period for which no locating information was provided. Neither patient A nor any of his interviewed sexual partners reported taking HIV preexposure prophylaxis (PrEP). Contact tracing and phylogenetic analysis of HIV sequences amplified from pretreatment plasma revealed that a non-work-related partner likely infected patient A, and that patient A likely subsequently infected both a coworker during the second film production and a non-work-related partner during the interval between his negative test and receipt of his positive HIV results. Adult film performers and production companies, medical providers, and all persons at risk for HIV should be aware that testing alone is not sufficient to prevent HIV transmission. Condom use provides additional protection from HIV and sexually transmitted infections (STIs). Performers and all persons at risk for HIV infection in their professional and personal lives should discuss the use of PrEP with their medical providers.

Concepts: HIV, AIDS, Reverse transcriptase, Oral sex, Sexually transmitted disease, Human sexual behavior, Sexually transmitted diseases and infections, Blood donation

48

New genetic tools are needed to understand the functional interactions between HIV and human host factors in primary cells. We recently developed a method to edit the genome of primary CD4(+) T cells by electroporation of CRISPR/Cas9 ribonucleoproteins (RNPs). Here, we adapted this methodology to a high-throughput platform for the efficient, arrayed editing of candidate host factors. CXCR4 or CCR5 knockout cells generated with this method are resistant to HIV infection in a tropism-dependent manner, whereas knockout of LEDGF or TNPO3 results in a tropism-independent reduction in infection. CRISPR/Cas9 RNPs can furthermore edit multiple genes simultaneously, enabling studies of interactions among multiple host and viral factors. Finally, in an arrayed screen of 45 genes associated with HIV integrase, we identified several candidate dependency/restriction factors, demonstrating the power of this approach as a discovery platform. This technology should accelerate target validation for pharmaceutical and cell-based therapies to cure HIV infection.

Concepts: HIV, Gene, Genetics, Bacteria, Genome, Reverse transcriptase, Retrovirus, Integrase

42

Thailand experienced a generalized human immunodeficiency virus (HIV) epidemic during the 1990s. HIV prevalence among pregnant women was 2.0% and the mother-to-child transmission (MTCT) rate was >20% (1-3). In June 2016, Thailand became the first country in Asia to validate the elimination of MTCT by meeting World Health Organization (WHO) targets. Because Thailand’s experience implementing a successful prevention of MTCT program might be instructive for other countries, Thailand’s prevention of MTCT interventions, outcomes, factors that contributed to success, and challenges that remain were reviewed. Thailand’s national prevention of MTCT program has evolved with prevention science from national implementation of short course zidovudine (AZT) in 2000 to lifelong highly active antiretroviral therapy regardless of CD4 count (WHO option B+) in 2014 (1). By 2015, HIV prevalence among pregnant women had decreased to 0.6% and the MTCT rate to 1.9% (the elimination of MTCT target is <2% for nonbreastfeeding populations) (4). A strong public health infrastructure, committed political leadership, government funding, engagement of multiple partners, and a robust monitoring system allowed Thailand to achieve this important public health milestone.

Concepts: Antiretroviral drug, HIV, AIDS, Protease inhibitor, Reverse transcriptase inhibitor, Reverse transcriptase, World Health Organization, Zidovudine