SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Reverse osmosis

28

We have previously reported the use of hydrogel particles as the draw agent for forward osmosis desalination. In the present work, the effects of draw agent, feed concentration and membrane on the process performance were systematically examined. Our results showed that the incorporation of carbon filler particles in polymer hydrogels led to enhanced swelling ratios of the draw agents and thus higher water fluxes in the FO process. The composite polymer hydrogel particles of sizes ranging from 100 μm to 200 μm as draw agents induced greater water fluxes in FO desalination as compared with those with larger particle sizes (500-700 μm). Similar to other types of draw solutes, as the salt concentration in the feed increased, the water flux created by the polymer hydrogel draw agent decreased; the use of a cellulose triacetate forward osmosis membrane resulted in higher water flux compared with the use of a polyamide composite reverse osmosis membrane.

Concepts: Desalination, Water, Cellulose acetate, Osmosis, Solution, Cellulose, Cellulose triacetate, Reverse osmosis

28

The occurrence and intensity of harmful algal blooms (HABs) have been increasing globally during the past few decades. The impact of these events on seawater desalination facilities has become an important topic in recent years due to enhanced societal interest and reliance on this technology for augmenting world water supplies. A variety of harmful bloom-forming species of microalgae occur in southern California, as well as many other locations throughout the world, and several of these species are known to produce potent neurotoxins. These algal toxins can cause a myriad of human health issues, including death, when ingested via contaminated seafood. This study was designed to investigate the impact that algal toxin presence may have on both the intake and reverse osmosis (RO) desalination process; most importantly, whether or not the naturally occurring algal toxins can pass through the RO membrane and into the desalination product. Bench-scale RO experiments were conducted to explore the potential of extracellular algal toxins contaminating the RO product. Concentrations exceeding maximal values previously reported during natural blooms were used in the laboratory experiments, with treatments comprised of 50 μg/L of domoic acid (DA), 2 μg/L of saxitoxin (STX) and 20 μg/L of brevetoxin (PbTx). None of the algal toxins used in the bench-scale experiments were detectable in the desalinated product water. Monitoring for intracellular and extracellular concentrations of DA, STX, PbTx and okadaic acid (OA) within the intake and desalinated water from a pilot RO desalination plant in El Segundo, CA, was conducted from 2005 to 2009. During the five-year monitoring period, DA and STX were detected sporadically in the intake waters but never in the desalinated water. PbTx and OA were not detected in either the intake or desalinated water. The results of this study demonstrate the potential for HAB toxins to be inducted into coastal RO intake facilities, and the ability of typical RO operations to effectively remove these toxins.

Concepts: Science and technology in Israel, Paralytic shellfish poisoning, Domoic acid, Algae, Water, Reverse osmosis, Algal bloom, Desalination

27

Membrane capacitive deionization (MCDI) is a water desalination technology based on applying a voltage between two oppositely placed porous carbon electrodes. In front of each electrode an ion-exchange membrane is positioned and between them a spacer is situated, which transports the water to be desalinated. In this work we demonstrate for the first time that up to 83% of the energy used for charging the electrodes during desalination can be recovered in the regeneration step. This can be achieved by charging and discharging the electrodes in a controlled manner by using constant current conditions. By implementing energy recovery as an integral part of the MCDI operation the overall energy consumption can be as low as 0.26 kWh per m3 produced water to reduce the salinity by 10 mM, which means that MCDI is more energy efficient for treatment of brackish water than reverse osmosis. Nevertheless, the measured energy consumption is much higher than the thermodynamically calculated values for desalinating the water, and therefore a further improvement in thermodynamic efficiency will be needed in the future.

Concepts: Reverse osmosis, Electrochemistry, Water supply, Chennai, Thermodynamics, Energy, Water, Desalination

27

Forward osmosis (FO) is an emerging membrane separation process that continues to be tested and im-plemented in various industrial water and wastewater treatment applications. The growing interests in the technology have prompted laboratories and manufacturers to adopt standard testing methods to ensure accurate comparison of membrane performance under laboratory-controlled conditions; however, stand-ardized methods might not capture specific operating conditions unique to industrial applications. Experi-ments with cellulose triacetate (CTA) and polyamide thin-film composite (TFC) FO membranes demon-strated that hydraulic transmembrane pressure (TMP), common in industrial operation of FO membrane elements, could affect membrane performance. Experiments were conducted with three FO membranes and with increasing TMP up to a maximum of 50 psi (3.45 bar). The feed solution was a mixture of salts and the draw solution was either a NaCl solution or concentrated seawater at similar osmotic pressure. Results revealed that TMP minimally affected water flux, reverse salt flux (RSF), and solute rejection of the CTA membrane. However, water flux through TFC membranes might slightly increase with increasing TMP, and RSF substantially declines with increasing TMP. It was observed that rejection of feed constit-uents was influenced by TMP and RSF.

Concepts: Osmotic pressure, Salt, Cellulose, Chemistry, Water, Sodium chloride, Reverse osmosis, Osmosis

26

Reverse osmosis membranes at many desalination plants are disinfected by periodic shock treatments with sodium metabisulphite, which have potentially toxic effects to the environment for marine life, although no empirical and experimental evidence for this is yet available. The aim of this study was to characterise for the first time, the physico-chemical modification of the marine environment and its biological effects, caused by hypersaline plumes during these membrane cleaning treatments. The case study was the Maspalomas II desalination plant, located in the south of Gran Canaria (Canary Islands, Spain). Toxicity bioassays were performed on marine species characteristic for the infralittoral soft bottoms influenced by the brine plume (Synodus synodus and Cymodocea nodosa), and revealed a high sensitivity to short-term exposure to low sodium metabisulphite concentrations. The corrective measure of incorporating a diffusion system with Venturi Eductors reduced nearly all the areas of influence, virtually eliminating the impact of the disinfectant.

Concepts: Tourism in Spain, Fuerteventura, Tenerife, Las Palmas de Gran Canaria, Reverse osmosis, Gran Canaria, Water, Canary Islands

25

The objective of our study was to determine if the limiting flux and serum protein (SP) removal were different at 8, 9, or 10% true protein (TP) in the microfiltration (MF) retentate recirculation loop using 0.1-µm ceramic graded permeability membranes with 4-mm channel diameters operated at 50°C using a diluted milk protein concentrate with 85% protein on a total solids basis (MPC85) as the MF feed. The limiting flux for the MF of diluted MPC85 was determined at 3 TP concentrations in the recirculation loop (8, 9, and 10%). The experiment was replicated 3 times for a total of 9 runs. On the morning of each run, MPC85 was diluted with reverse osmosis water to an MF feed TP concentration of 5.4%. In all runs, the starting flux was 55 kg/m(2) per hour, the flux was increased in steps until the limiting flux was reached. The minimum flux increase was 10 kg/m(2) per hour. The limiting flux decreased as TP concentration in the recirculation loop increased. The limiting flux was 154 ± 0.3, 133 ± 0.7, and 117 ± 3.3 kg/m(2) per hour at recirculation loop TP concentrations of 8.2 ± 0.07, 9.2 ± 0.04, and 10.2 ± 0.09%, respectively. No effect of recirculation loop TP concentration on the SP removal factor was detected. However, the SP removal factor decreased from 0.80 ± 0.02 to 0.75 ± 0.02 as flux was increased from the starting flux of 55 kg/m(2) per hour to the limiting flux, with a similar decrease seen at all recirculation loop TP concentrations.

Concepts: Serum total protein, Serum protein electrophoresis, Chemistry, Concentration, Total dissolved solids, Milk, Microfiltration, Reverse osmosis

24

The levels of natural radioactivity have been investigated in some Saudi Arabian Gulf coastal areas. Sampling sites were chosen according to the presence of nearby non-nuclear industrial activities such as, the two main water desalination plants in Al Khobar and Al Jubail, and Maaden phosphate complex in Ras Al Khair, to ensure that effluents discharges into the Arabian Gulf didn’t enhance radioactivity in seawater and shore sediments. Seawater samples were analyzed for radium isotopes (Ra-226 & Ra-228) and measured by gamma spectrometry using high purity germanium detector, after radiochemical separation of the isotopes by co-precipitation with MnO2. Shore sediment samples were analyzed for (226)Ra, (228)Ra ((232)Th), (4)°K and (137)Cs using gamma sepectrometry. A small variation was observed in the activity concentrations of the investigated radioisotopes, and the activity levels were comparable to those reported in literature. Quality assurance and methods validation were established through the efficiency calibration of the detectors, the estimation of uncertainties, the use of blanks, the analysis of standard reference materials and the intercomparison and proficiency tests. Radiological hazards were assessed, and the annual effective dose had an average value of 0.02mSv. On the basis of the current results, we may conclude that any radiological hazards to the public visiting these shores are not expected.

Concepts: Dammam, Reverse osmosis, Saudi Arabia, Water, Radioactive decay, Desalination, Eastern Province, Saudi Arabia, United Arab Emirates

15

Chlorine resistant reverse osmosis (RO) membranes were fabricated using a multi-walled carbon nanotube-polyamide (MWCNT-PA) nanocomposite. The separation performance of these membranes after chlorine exposure (4800 ppm·h) remained unchanged (99.9%) but was drastically reduced to 82% in the absence of MWCNT. It was observed that the surface roughness of the membranes changed significantly by adding MWCNT. Moreover, membranes containing MWCNT fractions above 12.5 wt.% clearly improved degradation resistance against chlorine exposure, with an increase in water flux while maintaining salt rejection performance. Molecular dynamics and quantum chemical calculations were performed in order to understand the high chemical stability of the MWCNT-PA nanocomposite membranes, and revealed that high activation energies are required for the chlorination of PA. The results presented here confirm the unique potential of carbon nanomaterials embedded in polymeric composite membranes for efficient RO water desalination technologies.

Concepts: Molecule, Chemistry, Carbon, Materials science, Desalination, Chemical bond, Reverse osmosis, Water

13

Efficient desalination of water continues to be a problem facing the society. Advances in nanotechnology have led to the development of a variety of nanoporous membranes for water purification. Here we show, by performing molecular dynamics simulations, that a nanopore in a single-layer molybdenum disulfide can effectively reject ions and allow transport of water at a high rate. More than 88% of ions are rejected by membranes having pore areas ranging from 20 to 60 Å(2). Water flux is found to be two to five orders of magnitude greater than that of other known nanoporous membranes. Pore chemistry is shown to play a significant role in modulating the water flux. Pores with only molybdenum atoms on their edges lead to higher fluxes, which are ∼70% greater than that of graphene nanopores. These observations are explained by permeation coefficients, energy barriers, water density and velocity distributions in the pores.

Concepts: Graphite, Atom, Desalination, Molecule, Drinking water, Water supply, Reverse osmosis, Water

7

Microbiomes of full-scale seawater reverse osmosis membranes are complex and subject to variation within and between membrane units. The pre-existing bacterial communities of unused membranes before operation have been largely ignored in biofouling studies. This study is novel as unused membranes were used as a critical benchmark for comparison. Fouled seawater reverse osmosis membrane biofilm communities from an array of autopsied membrane samples, following a 7-year operational life-span in a full-scale desalination plant in Western Australia, were characterised by 16S rRNA gene metabarcoding using the bacterial primers 515F and 806R. Communities were then compared based on fouling severity and sampling location. Microbiomes of proteobacterial predominance were detected on control unused membranes. However, fouled membrane communities differed significantly from those on unused membranes, reflecting that operational conditions select specific bacteria on the membrane surface. On fouled membranes, Proteobacteria were also predominant but families differed from those on unused membranes, followed by Bacteriodetes and Firmicutes. Betaproteobacteria correlated with stable, mature and thick biofilms such as those in severely fouled membranes or samples from the feed end of the membrane unit, while Alpha and Gammaproteobacteria were predominantly found in biofilms on fouled but visually clean, and moderately fouled samples or those from reject ends of membrane units. Gammaproteobacteria predominated the thin, compact biofilms at the mid-feed end of membrane units. The study also supported the importance of Caulobacterales and glycosphingolipid-producing bacteria, namely Sphingomonadales, Rhizobiales and Sphingobacteriia, in primary attachment and biofilm recalcitrance. Nitrate-and-nitrite-reducing bacteria such as Rhizobiales, Burkholderiales and some Pseudomonadales were also prevalent across all fouled membranes and appeared to be critical for ecological balance and biofilm maturation.

Concepts: Cell membrane, Ribosomal RNA, Microbiology, Archaea, 16S ribosomal RNA, Proteobacteria, Bacteria, Reverse osmosis