Discover the most talked about and latest scientific content & concepts.

Concept: Retinitis pigmentosa


Saffron, an extract from Crocus sativus, has been largely used in traditional medicine for its antiapoptotic and anticarcinogenic properties. In this work, we investigate the effects of safranal, a component of saffron stigmas, in attenuating retinal degeneration in the P23H rat model of autosomal dominant retinitis pigmentosa. We demonstrate that administration of safranal to homozygous P23H line-3 rats preserves both photoreceptor morphology and number. Electroretinographic recordings showed higher a- and b-wave amplitudes under both photopic and scotopic conditions in safranal-treated versus non-treated animals. Furthermore, the capillary network in safranal-treated animals was preserved, unlike that found in untreated animals. Our findings indicate that dietary supplementation with safranal slows photoreceptor cell degeneration and ameliorates the loss of retinal function and vascular network disruption in P23H rats. This work also suggests that safranal could be potentially useful to retard retinal degeneration in patients with retinitis pigmentosa.

Concepts: Retina, Retinitis pigmentosa, Saffron, Crocus, Safranal, Iridaceae, Picrocrocin, Minoan civilization


BACKGROUND/PURPOSE: Light-chain deposition disease (LCDD) is a rare condition characterised by deposition of monoclonal immunoglobulin light chains (LCs) in tissues, resulting in varying degrees of organ dysfunction. This study reports the characteristic clinical ocular findings seen in advanced LCDD upon development of ocular fundus changes. This is the first report to describe this entity in vivo in a series of patients. METHODS: A case series of ocular fundus changes in three patients with kidney biopsy-proven LCDD. All patients underwent best corrected visual acuity (BCVA) exam, perimetry, colour fundus photography and fluorescein angiography; two patients underwent indocyanine green angiography, optical coherence tomography, ultrasound and electroretinography; and one patient underwent fundus autofluorescence. RESULTS: Three patients, 53-60 years old at initial presentation, were studied. All three presented with night blindness, poor dark adaptation, metamorphopsia and visual loss. Examination revealed serous and serohaemorrhagic detachments, multiple retinal pigment epithelial (RPE) tears, diffuse RPE degeneration and progressive fibrotic changes. Neither choroidal neovascularisation nor other vascular abnormalities were present. Final best corrected visual acuity (BCVA) ranged from 20/40 to 20/300. CONCLUSIONS: Progressive LC deposition in the fundus seems to damage RPE pump function with flow disturbance between choroid and retina. This pathogenesis can explain the evolution to RPE detachments and subsequent rips and progressive retinal malfunction.

Concepts: Immune system, Retina, Eye, Ophthalmology, Retinitis pigmentosa, Immunoglobulin light chain, Fluorescein angiography, Fundus camera


Although retinal neurodegenerative conditions such as age-related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and retinal detachment have different etiologies and pathological characteristics, they also have many responses in common at the cellular level, including neural and glial remodeling. Structural changes in Müller cells, the large radial glia of the retina in retinal disease and injury have been well described, that of the retinal astrocytes remains less so. Using modern imaging technology to describe the structural remodeling of retinal astrocytes after retinal detachment is the focus of this paper. We present both a review of critical literature as well as novel work focusing on the responses of astrocytes following rhegmatogenous and serous retinal detachment. The mouse presents a convenient model system in which to study astrocyte reactivity since the Mϋller cell response is muted in comparison to other species thereby allowing better visualization of the astrocytes. We also show data from rat, cat, squirrel, and human retina demonstrating similarities and differences across species. Our data from immunolabeling and dye-filling experiments demonstrate previously undescribed morphological characteristics of normal astrocytes and changes induced by detachment. Astrocytes not only upregulate GFAP, but structurally remodel, becoming increasingly irregular in appearance, and often penetrating deep into neural retina. Understanding these responses, their consequences, and what drives them may prove to be an important component in improving visual outcome in a variety of therapeutic situations. Our data further supports the concept that astrocytes are important players in the retina’s overall response to injury and disease.

Concepts: Neuron, Retina, Retinitis pigmentosa, Diabetic retinopathy, Retinal detachment, Glial cells, Macular degeneration, Radial glia


Induced pluripotent stem cells (iPSCs) generated from patient fibroblasts could potentially be used as a source of autologous cells for transplantation in retinal disease. Patient-derived iPSCs, however, would still harbor disease-causing mutations. To generate healthy patient-derived cells, mutations might be repaired with new gene-editing technology based on the bacterial system of clustered regularly interspersed short palindromic repeats (CRISPR)/Cas9, thereby yielding grafts that require no patient immunosuppression. We tested whether CRISPR/Cas9 could be used in patient-specific iPSCs to precisely repair an RPGR point mutation that causes X-linked retinitis pigmentosa (XLRP). Fibroblasts cultured from a skin-punch biopsy of an XLRP patient were transduced to produce iPSCs carrying the patient’s c.3070G > T mutation. The iPSCs were transduced with CRISPR guide RNAs, Cas9 endonuclease, and a donor homology template. Despite the gene’s repetitive and GC-rich sequences, 13% of RPGR gene copies showed mutation correction and conversion to the wild-type allele. This is the first report using CRISPR to correct a pathogenic mutation in iPSCs derived from a patient with photoreceptor degeneration. This important proof-of-concept finding supports the development of personalized iPSC-based transplantation therapies for retinal disease.

Concepts: DNA, Gene, Genetics, Bacteria, Allele, Evolution, Stem cell, Retinitis pigmentosa


Retinal prosthesis technologies require that the visual system downstream of the retinal circuitry be capable of transmitting and elaborating visual signals. We studied the capability of plastic remodeling in late blind subjects implanted with the Argus II Retinal Prosthesis with psychophysics and functional MRI (fMRI). After surgery, six out of seven retinitis pigmentosa (RP) blind subjects were able to detect high-contrast stimuli using the prosthetic implant. However, direction discrimination to contrast modulated stimuli remained at chance level in all of them. No subject showed any improvement of contrast sensitivity in either eye when not using the Argus II. Before the implant, the Blood Oxygenation Level Dependent (BOLD) activity in V1 and the lateral geniculate nucleus (LGN) was very weak or absent. Surprisingly, after prolonged use of Argus II, BOLD responses to visual input were enhanced. This is, to our knowledge, the first study tracking the neural changes of visual areas in patients after retinal implant, revealing a capacity to respond to restored visual input even after years of deprivation.

Concepts: Retina, Visual perception, Visual system, Prosthetics, Retinitis pigmentosa, Thalamus, Lateral geniculate nucleus, Optic nerve


Targeted genome editing via engineered nucleases is an exciting area of biomedical research and holds potential for clinical applications. Despite rapid advances in the field, in vivo targeted transgene integration is still infeasible because current tools are inefficient, especially for non-dividing cells, which compose most adult tissues. This poses a barrier for uncovering fundamental biological principles and developing treatments for a broad range of genetic disorders. Based on clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) technology, here we devise a homology-independent targeted integration (HITI) strategy, which allows for robust DNA knock-in in both dividing and non-dividing cells in vitro and, more importantly, in vivo (for example, in neurons of postnatal mammals). As a proof of concept of its therapeutic potential, we demonstrate the efficacy of HITI in improving visual function using a rat model of the retinal degeneration condition retinitis pigmentosa. The HITI method presented here establishes new avenues for basic research and targeted gene therapies.

Concepts: DNA, Gene, Genetics, Biology, Organism, In vivo, In vitro, Retinitis pigmentosa


The Argus II Retinal Prosthesis System (Second Sight Medical Products, Inc, Sylmar, CA) was developed to restore some vision to patients blind as a result of retinitis pigmentosa (RP) or outer retinal degeneration. A clinical trial was initiated in 2006 to study the long-term safety and efficacy of the Argus II System in patients with bare or no light perception resulting from end-stage RP.

Concepts: Health care, Medicine, Avicenna, Physician, Retina, Ophthalmology, Retinitis pigmentosa, Blindness


Various retinal degenerative diseases including dry and neovascular age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy are associated with the degeneration of the retinal pigmented epithelial (RPE) layer of the retina. This consequently results in the death of rod and cone photoreceptors that they support, structurally and functionally leading to legal or complete blindness. Therefore, developing therapeutic strategies to preserve cellular homeostasis in the RPE would be a favorable asset in the clinic. The aryl hydrocarbon receptor (AhR) is a conserved, environmental ligand-dependent, per ARNT-sim (PAS) domain containing bHLH transcription factor that mediates adaptive response to stress via its downstream transcriptional targets. Using in silico, in vitro and in vivo assays, we identified 2,2'-aminophenyl indole (2AI) as a potent synthetic ligand of AhR that protects RPE cells in vitro from lipid peroxidation cytotoxicity mediated by 4-hydroxynonenal (4HNE) as well as the retina in vivo from light-damage. Additionally, metabolic characterization of this molecule by LC-MS suggests that 2AI alters the lipid metabolism of RPE cells, enhancing the intracellular levels of palmitoleic acid. Finally, we show that, as a downstream effector of 2AI-mediated AhR activation, palmitoleic acid protects RPE cells from 4HNE-mediated stress, and light mediated retinal degeneration in mice.

Concepts: Protein, Gene expression, In vivo, Retina, In vitro, Retinitis pigmentosa, Macular degeneration, Blindness


Progressive retinal atrophy (PRA) in dogs is characterised by the degeneration of the photoreceptor cells of the retina, resulting in vision loss and eventually complete blindness. The condition affects more than 100 dog breeds and is known to be genetically heterogeneous between breeds. Around 14 mutations have now been identified that are associated with PRA in around 49 breeds, but for the majority of breeds the mutation(s) responsible have yet to be identified. Using genome-wide association with 16 Gordon Setter PRA cases and 22 controls, we identified a novel PRA locus, termed rod-cone degeneration 4 (rcd4), on CFA17 (P  = 2.22 × 10 , P  = 2.00 × 10 ), where a 3.2-Mb region was homozygous within cases. A frameshift mutation was identified in C2orf71, a gene located within this region. This variant was homozygous in 19 of 21 PRA cases and was at a frequency of approximately 0.37 in the Gordon Setter population. Approximately 10% of cases in our study (2 of 21) are not associated with this C2orf71 mutation, indicating that PRA in this breed is genetically heterogeneous and caused by at least two mutations. This variant is also present in a number of Irish Setter dogs with PRA and has an estimated allele frequency of 0.26 in the breed. The function of C2orf71 remains unknown, but it is important for retinal development and function and has previously been associated with autosomal recessive retinitis pigmentosa in humans.

Concepts: Genetics, Allele, Retina, Retinitis pigmentosa, Dog breed, Progressive retinal atrophy, Irish Setter, Setter


PURPOSE: The purposes of this study are to investigate the physiological mechanism of stimulus-evoked fast intrinsic optical signals (IOSs) recorded in dynamic confocal imaging of the retina, and to demonstrate the feasibility of in vivo confocal-IOS mapping of localized retinal dysfunctions. METHODS: A rapid line-scan confocal ophthalmoscope was constructed to achieve in vivo confocal-IOS imaging of frog (Rana Pipiens) retinas at cellular resolution. In order to investigate the physiological mechanism of confocal-IOS, comparative IOS and electroretinography (ERG) measurements were conducted using normal frog eyes activated by variable intensity stimuli. A dynamic spatiotemporal filtering algorithm was developed to reject the contamination of hemodynamic changes on fast IOS recording. Laser-injured frog eyes were employed to test the potential of confocal-IOS mapping of localized retinal dysfunctions. RESULTS: Comparative IOS and ERG experiments revealed a close correlation between the confocal-IOS and retinal ERG, particularly the ERG a-wave which has been widely used to evaluate photoreceptor function. IOS imaging of laser-injured frog eyes indicates that the confocal-IOS can unambiguously detect localized (30 µm) functional lesions in the retina before a morphological abnormality is detectable. CONCLUSIONS: The confocal-IOS predominantly results from retinal photoreceptors, and can be used to map localized photoreceptor lesion in laser-injured frog eyes. We anticipate that confocal-IOS imaging can provide applications in early detection of age-related macular degeneration, retinitis pigmentosa and other retinal diseases that can cause pathological changes in the photoreceptors.

Concepts: Retina, Eye, Photoreceptor cell, Retinitis pigmentosa, Macular degeneration, Rod cell, Cone cell, Electroretinography