SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Reprogramming

134

Epidemiological studies suggest that a father’s diet can influence offspring health. A proposed mechanism for paternal transmission of environmental information is via the sperm epigenome. The epigenome includes heritable information such as DNA methylation. We hypothesize that the dietary supply of methyl donors will alter epigenetic reprogramming in sperm. Here we feed male mice either a folate-deficient or folate-sufficient diet throughout life. Paternal folate deficiency is associated with increased birth defects in the offspring, which include craniofacial and musculoskeletal malformations. Genome-wide DNA methylation analysis and the subsequent functional analysis identify differential methylation in sperm of genes implicated in development, chronic diseases such as cancer, diabetes, autism and schizophrenia. While >300 genes are differentially expressed in offspring placenta, only two correspond to genes with differential methylation in sperm. This model suggests epigenetic transmission may involve sperm histone H3 methylation or DNA methylation and that adequate paternal dietary folate is essential for offspring health.

Concepts: DNA, Gene expression, Histone, Epigenetics, DNA methylation, Methylation, Nucleosome, Reprogramming

81

We previously identified PRAME as a biomarker for metastatic risk in Class 1 uveal melanomas. In this study, we sought to define a threshold value for positive PRAME expression (PRAME+) in a large dataset, identify factors associated with PRAME expression, evaluate the prognostic value of PRAME in Class 2 uveal melanomas, and determine whether PRAME expression is associated with aberrant hypomethylation of the PRAME promoter.

Concepts: DNA, Gene expression, Cancer, Epigenetics, DNA methylation, Uveal melanoma, Reprogramming

44

Resetting of the epigenome in human primordial germ cells (hPGCs) is critical for development. We show that the transcriptional program of hPGCs is distinct from that in mice, with co-expression of somatic specifiers and naive pluripotency genes TFCP2L1 and KLF4. This unique gene regulatory network, established by SOX17 and BLIMP1, drives comprehensive germline DNA demethylation by repressing DNA methylation pathways and activating TET-mediated hydroxymethylation. Base-resolution methylome analysis reveals progressive DNA demethylation to basal levels in week 5-7 in vivo hPGCs. Concurrently, hPGCs undergo chromatin reorganization, X reactivation, and imprint erasure. Despite global hypomethylation, evolutionarily young and potentially hazardous retroelements, like SVA, remain methylated. Remarkably, some loci associated with metabolic and neurological disorders are also resistant to DNA demethylation, revealing potential for transgenerational epigenetic inheritance that may have phenotypic consequences. We provide comprehensive insight on early human germline transcriptional network and epigenetic reprogramming that subsequently impacts human development and disease.

Concepts: DNA, Gene, Gene expression, Histone, Epigenetics, DNA methylation, Methylation, Reprogramming

28

Progress in studying epigenetic reprogramming in plants has been impeded by the difficulty in obtaining tissue for analysis. Now, using a combination of fluorescent reporters and translational fusions, a new study sheds some light on this process.

Concepts: DNA, Epigenetics, DNA methylation, Learning, Study skills, DNA methyltransferase, Reprogramming, Homework

9

Identifying molecular alterations in normal tissue adjacent to cancer is important for understanding cancer aetiology and designing preventive measures. Here we analyse the DNA methylome of 569 breast tissue samples, including 50 from cancer-free women and 84 from matched normal cancer pairs. We use statistical algorithms for dissecting intra- and inter-sample cellular heterogeneity and demonstrate that normal tissue adjacent to breast cancer is characterized by tens to thousands of epigenetic alterations. We show that their genomic distribution is non-random, being strongly enriched for binding sites of transcription factors specifying chromatin architecture. We validate the field defects in an independent cohort and demonstrate that over 30% of the alterations exhibit increased enrichment within matched cancer samples. Breast cancers highly enriched for epigenetic field defects, exhibit adverse clinical outcome. Our data support a model where clonal epigenetic reprogramming towards reduced differentiation in normal tissue is an important step in breast carcinogenesis.

Concepts: DNA, Gene expression, Cancer, Breast cancer, Histone, Epigenetics, DNA methylation, Reprogramming

9

The direct conversion of fibroblasts to induced dopaminergic (iDA) neurons and other cell types demonstrates the plasticity of cell fate. The low efficiency of these relatively fast conversions suggests that kinetic barriers exist to safeguard cell-type identity. Here we show that suppression of p53, in conjunction with cell cycle arrest at G1 and appropriate extracellular environment, markedly increase the efficiency in the transdifferentiation of human fibroblasts to iDA neurons by Ascl1, Nurr1, Lmx1a and miR124. The conversion is dependent on Tet1, as G1 arrest, p53 knockdown or expression of the reprogramming factors induces Tet1 synergistically. Tet1 knockdown abolishes the transdifferentiation while its overexpression enhances the conversion. The iDA neurons express markers for midbrain DA neurons and have active dopaminergic transmission. Our results suggest that overcoming these kinetic barriers may enable highly efficient epigenetic reprogramming in general and will generate patient-specific midbrain DA neurons for Parkinson’s disease research and therapy.

Concepts: Gene expression, Cell, Epigenetics, Stem cell, Cell cycle, Parkinson's disease, Dopamine, Reprogramming

7

After fertilization, to initiate development, gametes are reprogramed to become totipotent. Approximately half of the mammalian genome consists of repetitive elements, including retrotransposons, some of which are transcribed after fertilization. Retrotransposon activation is generally assumed to be a side effect of the extensive chromatin remodeling underlying the epigenetic reprogramming of gametes. Here, we used a targeted epigenomic approach to address whether specific retrotransposon families play a direct role in chromatin organization and developmental progression. We demonstrate that premature silencing of LINE-1 elements decreases chromatin accessibility, whereas prolonged activation prevents the gradual chromatin compaction that occurs naturally in developmental progression. Preventing LINE-1 activation and interfering with its silencing decreases developmental rates independently of the coding nature of the LINE-1 transcript, thus suggesting that LINE-1 functions primarily at the chromatin level. Our data suggest that activation of LINE-1 regulates global chromatin accessibility at the beginning of development and indicate that retrotransposon activation is integral to the developmental program.

Concepts: DNA, Gene, Gene expression, Epigenetics, Developmental biology, Chromatin, Reprogramming, Retrotransposon

4

Understanding the mechanism of resistance of genes to reactivation will help improve the success of nuclear reprogramming. Using mouse embryonic fibroblast nuclei with normal or reduced DNA methylation in combination with chromatin modifiers able to erase H3K9me3, H3K27me3, and H2AK119ub1 from transplanted nuclei, we reveal the basis for resistance of genes to transcriptional reprogramming by oocyte factors. A majority of genes is affected by more than one type of treatment, suggesting that resistance can require repression through multiple epigenetic mechanisms. We classify resistant genes according to their sensitivity to 11 chromatin modifier combinations, revealing the existence of synergistic as well as adverse effects of chromatin modifiers on removal of resistance. We further demonstrate that the chromatin modifier USP21 reduces resistance through its H2AK119 deubiquitylation activity. Finally, we provide evidence that H2A ubiquitylation also contributes to resistance to transcriptional reprogramming in mouse nuclear transfer embryos.

Concepts: DNA, Gene, Cell nucleus, Gene expression, Histone, Epigenetics, DNA methylation, Reprogramming

4

Global DNA demethylation is a hallmark of embryonic epigenetic reprogramming. However, embryos engage noncanonical DNA methylation maintenance mechanisms to ensure inheritance of exceptional epigenetic germline features to the soma. Besides the paradigmatic genomic imprints, these exceptions remain ill-defined, and the mechanisms ensuring demethylation resistance in the light of global reprogramming remain poorly understood. Here we show that the Y-linked gene Rbmy1a1 is highly methylated in mature sperm and resists DNA demethylation post-fertilization. Aberrant hypomethylation of the Rbmy1a1 promoter results in its ectopic activation, causing male-specific peri-implantation lethality. Rbmy1a1 is a novel target of the TRIM28 complex, which is required to protect its repressive epigenetic state during embryonic epigenetic reprogramming.

Concepts: DNA, Gene, Gene expression, Histone, Epigenetics, DNA methylation, Methylation, Reprogramming

4

Postpartum depression (PPD) affects ∼10-18% of women in the general population and results in serious consequences to both the mother and offspring. We hypothesized that predisposition to PPD risk is due to an altered sensitivity to estrogen-mediated epigenetic changes that act in a cell autonomous manner detectable in the blood. We investigated estrogen-mediated epigenetic reprogramming events in the hippocampus and risk to PPD using a cross-species translational design. DNA methylation profiles were generated using methylation microarrays in a prospective sample of the blood from the antenatal period of pregnant mood disorder patients who would and would not develop depression postpartum. These profiles were cross-referenced with syntenic locations exhibiting hippocampal DNA methylation changes in the mouse responsive to long-term treatment with 17β-estradiol (E2). DNA methylation associated with PPD risk correlated significantly with E2-induced DNA methylation change, suggesting an enhanced sensitivity to estrogen-based DNA methylation reprogramming exists in those at risk for PPD. Using the combined mouse and human data, we identified two biomarker loci at the HP1BP3 and TTC9B genes that predicted PPD with an area under the receiver operator characteristic (ROC) curve (area under the curve (AUC)) of 0.87 in antenatally euthymic women and 0.12 in a replication sample of antenatally depressed women. Incorporation of blood count data into the model accounted for the discrepancy and produced an AUC of 0.96 across both prepartum depressed and euthymic women. Pathway analyses demonstrated that DNA methylation patterns related to hippocampal synaptic plasticity may be of etiological importance to PPD.Molecular Psychiatry advance online publication, 21 May 2013; doi:10.1038/mp.2013.62.

Concepts: DNA, Scientific method, Gene, Epigenetics, DNA methylation, Bipolar disorder, Major depressive disorder, Reprogramming