Discover the most talked about and latest scientific content & concepts.

Concept: Renal failure


BACKGROUND: Hematologic and biochemical data are needed to characterize the health status of animal populations over time to determine the habitat quality and captivity conditions. Blood components and the chemical entities that they transport change predominantly with sex and age. The aim of this study was to utilize blood chemistry monitoring to establish the reference levels in a small prosimian primate, the Grey Mouse Lemur (Microcebus murinus). METHOD: In the captive colony, mouse lemurs may live 10-12 years, and three age groups for both males and females were studied: young (1-3 years), middle-aged (4-5 years) and old (6-10 years). Blood biochemical markers were measured using the VetScan Comprehensive Diagnostic Profile. Because many life history traits of this primate are highly dependent on the photoperiod (body mass and reproduction), the effect of season was also assessed. RESULTS: The main effect of age was observed in blood markers of renal functions such as creatinine, which was higher among females. Additionally, blood urea nitrogen significantly increased with age and is potentially linked to chronic renal insufficiency, which has been described in captive mouse lemurs. The results demonstrated significant effects related to season, especially in blood protein levels and glucose rates; these effects were observed regardless of gender or age and were likely due to seasonal variations in food intake, which is very marked in this species. CONCLUSION: These results were highly similar with those obtained in other primate species and can serve as references for future research of the Grey Mouse Lemur.

Concepts: Renal failure, Primate, Lemur, Mouse lemur, Cheirogaleidae, Gray Mouse Lemur, Prosimian


The purpose of this study was to evaluate the efficacy of vildagliptin 50 mg once daily in patients with severe renal impairment (estimated glomerular filtration rate < 30 mL/min/1.73 m(2)) and longstanding type 2 diabetes not adequately controlled with insulin therapy, which is a difficult-to-treat population, with limited therapeutic options and a high susceptibility to hypoglycemia.

Concepts: Renal failure, Nephrology, Dialysis, Insulin, Diabetes mellitus type 2, Diabetes mellitus, Diabetes mellitus type 1, Renal function


BACKGROUND: Fibroblast growth factor 23 (FGF23) is an important hormone in the regulation of phosphate metabolism. It is unclear whether FGF23 is associated with carotid artery calcification (CAAC) in predialysis patients. The present study aimed to clarify the relationship between FGF23 and CAAC in patients with chronic kidney disease (CKD) who were not on dialysis. METHODS: One-hundred ninety-five predialysis CKD patients were enrolled in this cross-sectional study. CAAC was assessed using multidetector computed tomography, and the prevalence of CAAC was examined. Intact FGF23 was measured in each patient. The risk factors for CAAC were evaluated using a logistic regression model. RESULTS: We found CAAC in 66% of the patients. The prevalence of CAAC significantly increased across CKD stages: it was 37% in CKD stages 1–2, 58% in stage 3; 75% in stage 4, and 77% in stage 5 (p < 0.01). In multivariate analysis, smoking, diabetes mellitus and log FGF23 were each identified as risk factors for CAAC. The study population was divided in quartiles of FGF23 levels. Compared with the lowest FGF23 quartile, each subsequent quartile had a progressively higher odds ratio (OR) for CAAC, adjusted for confounders (ORs [95% confidence interval] of 2.34 [0.78 to 7.31], 5.28 [1.56 to 19.5], and 13.6 [2.92 to 74.6] for the second, third, and fourth quartiles, respectively. CONCLUSIONS: The prevalence of CAAC is increased with the decline in the kidney function. FGF23 is independently related to CAAC in patients with CKD who are not on dialysis.

Concepts: Renal failure, Chronic kidney disease, Kidney, Nephrology, Erythropoietin, Epidemiology, Diabetes mellitus, Medical statistics


BACKGROUND: Incorporation of the solubilizing excipient, sulfobutylether-beta-cyclodextrin (SBECD), in the intravenous (IV) formulation of voriconazole has resulted in the recommendation that this formulation be used with caution in patients with creatinine clearances (Clcr) < 50 mL/min. This study evaluated the safety of IV voriconazole compared with two other IV antifungals not containing SBECD in patients with compromised renal function. METHODS: A total of 128 patients aged 11--93 years who had a baseline Clcr < 50 mL/min between January 1, 2007 and December 31, 2010 were identified from a database of a university-affiliated inpatient healthcare system; of these, 55 patients received caspofungin, 54 patients received fluconazole, and 19 patients received voriconazole. Changes in serum creatinine (Scr) and Clcr levels while on therapy were compared with baseline values and between groups. RESULTS: The groups had similar characteristics apart from the larger proportion of females that received fluconazole. Baseline Scr was higher in those receiving caspofungin, but maximal increases of Scr and decreases in Clcr were greatest for the fluconazole group. Acute kidney injury (AKI), assessed by RIFLE criteria, was more frequent in the fluconazole vs. the caspofungin group (p < 0.01); incidence of AKI in the voriconazole group was not significantly different than found in the other two groups. The infecting organism was a predictor of AKI and formulation with SBECD was not. CONCLUSIONS: Treatment of fungal infections in patients with compromised renal function with an SBECD-containing antifungal agent was not associated with AKI in clinical practice. Since the infecting organism was associated with AKI, decision on which antifungal to use should be determined by susceptibilities to the organism and not the incorporation of SBECD in the IV formulation.

Concepts: Renal failure, Renal physiology, Blood urea nitrogen, Antifungals, Candidiasis, Antifungal drug, Athlete's foot, Griseofulvin


Chronic renal failure (CRF) is associated with the development of secondary hyperparathyroidism and vascular calcifications. We evaluated the efficacy of PA21, a new iron-based non-calcium phosphate binder, in controlling phosphocalcic disorders and preventing vascular calcifications in uremic rats. Rats with adenine-diet-induced CRF were randomized to receive either PA21 0.5%, 1.5% or 5% or calcium carbonate (CaCO3) 3% in the diet, for 4 weeks and were compared with uremic and non-uremic control groups. After 4 weeks' phosphate binder treatment, serum calcium, creatinine and body weight were similar between all CRF groups. Serum phosphorus was reduced with CaCO3 3% (2.06 mmol/l, P≤0.001), PA21 1.5% (2.29 mmol/l, P<0.05) and PA21 5% (2.21 mmol/l, P≤0.001) versus CRF controls (2.91 mmol/l). Intact parathyroid hormone was strongly reduced in the PA21 5% and CaCO3 3% CRF groups to a similar extent (1138 and 1299 pg/ml, respectively) versus CRF controls (3261 pg/ml, both P≤0.001). A lower serum fibroblast growth factor 23 concentration was observed in the PA21 5%, compared with CaCO3 3% and CRF, control groups. PA21 5% CRF rats had a lower vascular calcification score compared with CaCO3 3% CRF rats and CRF controls. In conclusion, PA21 was as effective as CaCO3 at controlling phosphocalcic disorders but superior in preventing the development of vascular calcifications in uremic rats. Thus, PA21 represents a possible alternative to calcium-based phosphate binders in CRF patients.

Concepts: Renal failure, Nephrology, Carbon dioxide, Parathyroid hormone, Calcium carbonate, Hyperparathyroidism, Organ failure, Phosphate binders


Renal fibrosis represents a common pathway leading to progression of chronic kidney disease. Renal interstitial fibrosis is characterized by extensive fibroblast activation and excessive production and deposition of extracellular matrix (ECM), which leads to progressive loss of kidney function. There is no effective therapy available clinically to halt or even reverse renal fibrosis. Although activated fibroblasts/myofibroblasts are responsible for the excessive production and deposition of ECM, their origin remains controversial. Recent evidence suggests that bone marrow-derived fibroblast precursors contribute significantly to the pathogenesis of renal fibrosis. Understanding the molecular signaling mechanisms underlying the recruitment and activation of the bone marrow-derived fibroblast precursors will lead to novel therapy for the treatment of chronic kidney disease. In this review, we summarize recent advances in our understanding of the recruitment and activation of bone marrow-derived fibroblast precursors in the kidney and the development of renal fibrosis and highlights new insights that may lead to novel therapies to prevent or reverse the development of renal fibrosis.

Concepts: Renal failure, Chronic kidney disease, Kidney, Nephrology, Erythropoietin, Collagen, Extracellular matrix, Renal physiology


Acute kidney injury (AKI) complicates recovery from cardiac surgery in up to 30 % of patients, injures and impairs the function of the brain, lungs, and gut, and places patients at a 5-fold increased risk of death during hospitalization. Renal ischemia, reperfusion, inflammation, hemolysis, oxidative stress, cholesterol emboli, and toxins contribute to the development and progression of AKI. Preventive strategies are limited, but current evidence supports maintenance of renal perfusion and intravascular volume while avoiding venous congestion, administration of balanced salt as opposed to high-chloride intravenous fluids, and the avoidance or limitation of cardiopulmonary bypass exposure. AKI that requires renal replacement therapy occurs in 2-5 % of patients following cardiac surgery and is associated with 50 % mortality. For those who recover from renal replacement therapy or even mild AKI, progression to chronic kidney disease in the ensuing months and years is more likely than for those who do not develop AKI. Cardiac surgery continues to be a popular clinical model to evaluate novel therapeutics, off-label use of existing medications, and nonpharmacologic treatments for AKI, since cardiac surgery is fairly common, typically elective, provides a relatively standardized insult, and patients remain hospitalized and monitored following surgery. More efficient and time-sensitive methods to diagnose AKI are imperative to reduce this negative outcome. The discovery and validation of renal damage biomarkers should in time supplant creatinine-based criteria for the clinical diagnosis of AKI.

Concepts: Renal failure, Chronic kidney disease, Nephrology, Medicine, Blood, Hospital, Blood vessel, Ischemia


Kidney fibrosis and fibrogenesis significantly exacerbate chronic kidney disease (CKD) progression and are essential therapeutic targets. Bortezomib (BZM) is a proteasome inhibitor used for the treatment of multiple myeloma (MM). Several studies have demonstrated that BZM attenuates renal impairment in patients with MM, although this effect is generally considered to be the result of MM remission. Recently, several studies on BZM reported anti-fibrotic effects on liver and skin in experimental animal models. However, its effect on renal fibrosis has yet to be examined. Here, we investigated the anti-fibrotic effects of BZM in an experimental mouse model of fibrosis that uses aristolochic acid I (AA). Ten weeks of AA administration with BZM treatment twice a week significantly attenuated AA-induced renal dysfunction and albuminuria, reduced the expression of renal fibrosis-related proteins and kidney injury markers, such as αSMA, Kim1, and Ngal, and prevented renal fibrosis at the level of histopathology. Furthermore, pathological activation of TGFβ1-Smad3 signaling and apoptosis, essential pathophysiological causes of AA-induced nephropathy (AAN), were ameliorated by BZM, suggesting this mechanism may be involved in improving fibrosis in AAN. In conclusion, BZM directly inhibits renal fibrosis in CKD via suppression of TGFβ1-Smad3 signaling and is promising in terms of drug repositioning.

Concepts: Multiple myeloma, Renal failure, Chronic kidney disease, Kidney, Nephrology, Proteasome, Animal model, Bortezomib


Patients with chronic kidney disease (CKD) have been found to show markedly increased rates of end-stage renal disease, major adverse cardiovascular and cerebrovascular events (MACCEs), and mortality. Therefore, new biomarkers are required for the early detection of such clinical outcomes in patients with CKD. We aimed to determine whether the level of circulating renalase was associated with CKD progression, MACCEs, and all-cause mortality, using data from a prospective randomized controlled study, Kremezin STudy Against Renal disease progression in Korea (K-STAR; NCT 00860431).

Concepts: Renal failure, Chronic kidney disease, Kidney, Nephrology, Erythropoietin


Background Evaluation of candidates to serve as living kidney donors relies on screening for individual risk factors for end-stage renal disease (ESRD). To support an empirical approach to donor selection, we developed a tool that simultaneously incorporates multiple health characteristics to estimate a person’s probable long-term risk of ESRD if that person does not donate a kidney. Methods We used risk associations from a meta-analysis of seven general population cohorts, calibrated to the population-level incidence of ESRD and mortality in the United States, to project the estimated long-term incidence of ESRD among persons who do not donate a kidney, according to 10 demographic and health characteristics. We then compared 15-year projections with the observed risk among 52,998 living kidney donors in the United States. Results A total of 4,933,314 participants from seven cohorts were followed for a median of 4 to 16 years. For a 40-year-old person with health characteristics that were similar to those of age-matched kidney donors, the 15-year projections of the risk of ESRD in the absence of donation varied according to race and sex; the risk was 0.24% among black men, 0.15% among black women, 0.06% among white men, and 0.04% among white women. Risk projections were higher in the presence of a lower estimated glomerular filtration rate, higher albuminuria, hypertension, current or former smoking, diabetes, and obesity. In the model-based lifetime projections, the risk of ESRD was highest among persons in the youngest age group, particularly among young blacks. The 15-year observed risks after donation among kidney donors in the United States were 3.5 to 5.3 times as high as the projected risks in the absence of donation. Conclusions Multiple demographic and health characteristics may be used together to estimate the projected long-term risk of ESRD among living kidney-donor candidates and to inform acceptance criteria for kidney donors. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases and others.).

Concepts: Renal failure, Chronic kidney disease, Kidney, Nephrology, Renal physiology, Black people, Race, White people