Discover the most talked about and latest scientific content & concepts.

Concept: Remote sensing


The abundant dinosaurian tracksites of the Lower Cretaceous (Valanginian-Barremian) Broome Sandstone of the Dampier Peninsula, Western Australia, form an important part of the West Kimberley National Heritage Place. Previous attempts to document these tracksites using traditional mapping techniques (e.g., surface overlays, transects and gridlines combined with conventional photography) have been hindered by the non-trivial challenges associated with working in this area, including, but not limited to: (1) the remoteness of many of the tracksites; (2) the occurrence of the majority of the tracksites in the intertidal zone; (3) the size and complexity of many of the tracksites, with some extending over several square kilometres. Using the historically significant and well-known dinosaurian tracksites at Minyirr (Gantheaume Point), we show how these issues can be overcome through the use of an integrated array of remote sensing tools. A combination of high-resolution aerial photography with both manned and unmanned aircraft, airborne and handheld high-resolution lidar imaging and handheld photography enabled the collection of large amounts of digital data from which 3D models of the tracksites at varying resolutions were constructed. The acquired data encompasses a very broad scale, from the sub-millimetre level that details individual tracks, to the multiple-kilometre level, which encompasses discontinuous tracksite exposures and large swathes of coastline. The former are useful for detailed ichnological work, while the latter are being employed to better understand the stratigraphic and temporal relationship between tracksites in a broader geological and palaeoecological context. These approaches and the data they can generate now provide a means through which digital conservation and temporal monitoring of the Dampier Peninsula’s dinosaurian tracksites can occur. As plans for the on-going management of the tracks in this area progress, analysis of the 3D data and 3D visualization will also likely provide an important means through which the broader public can experience these spectacular National Heritage listed landscapes.

Concepts: Geographic information system, Computer graphics, Cretaceous, Remote sensing, Intertidal zone, Cartography, Aerial photography, TopoFlight


For decades, ecologists have measured habitat attributes in the field to understand and predict patterns of animal distribution and abundance. However, the scale of inference possible from field measured data is typically limited because large-scale data collection is rarely feasible. This is problematic given that conservation and management typical require data that are fine grained yet broad in extent. Recent advances in remote sensing methodology offer alternative tools for efficiently characterizing wildlife habitat across broad areas. We explored the use of remotely sensed image texture, which is a surrogate for vegetation structure, calculated from both an air photo and from a Landsat TM satellite image, compared with field-measured vegetation structure, characterized by foliage-height diversity and horizontal vegetation structure, to predict avian density and species richness within grassland, savanna, and woodland habitats at Fort McCoy Military Installation, Wisconsin, USA. Image texture calculated from the air photo best predicted density of a grassland associated species, grasshopper sparrow (Ammodramus savannarum), within grassland habitat (R(2)  = 0.52, p-value <0.001), and avian species richness among habitats (R(2)  = 0.54, p-value <0.001). Density of field sparrow (Spizella pusilla), a savanna associated species, was not particularly well captured by either field-measured or remotely sensed vegetation structure variables, but was best predicted by air photo image texture (R(2)  = 0.13, p-value = 0.002). Density of ovenbird (Seiurus aurocapillus), a woodland associated species, was best predicted by pixel-level satellite data (mean NDVI, R(2)  = 0.54, p-value <0.001). Surprisingly and interestingly, remotely sensed vegetation structure measures (i.e., image texture) were often better predictors of avian density and species richness than field-measured vegetation structure, and thus show promise as a valuable tool for mapping habitat quality and characterizing biodiversity across broad areas.

Concepts: Habitat, Prediction, Habitats, Grassland, Remote sensing, American sparrow, Birds of the United States, Spizella


BACKGROUND: A remote sensing technique was developed which combines a Geographic Information System (GIS); Google Earth, and Microsoft Excel to identify home locations for a random sample of households in rural Haiti. The method was used to select homes for ethnographic and water quality research in a region of rural Haiti located within 9 km of a local hospital and source of health education in Deschapelles, Haiti. The technique does not require access to governmental records or ground based surveys to collect household location data and can be performed in a rapid, cost effective manner. METHODS: The random selection of households and the location of these households during field surveys were accomplished using GIS, Google Earth, Microsoft Excel, and handheld Garmin GPSmap 76CSx GPS units. Homes were identified and mapped in Google Earth, exported to ArcMap 10.0, and a random list of homes was generated using Microsoft Excel which was then loaded onto handheld GPS units for field location. The development and use of a remote sensing method was essential to the selection and location of random households. RESULTS: A total of 537 homes initially were mapped and a randomized subset of 96 was identified as potential survey locations. Over 96% of the homes mapped using Google Earth imagery were correctly identified as occupied dwellings. Only 3.6% of the occupants of mapped homes visited declined to be interviewed. 16.4% of the homes visited were not occupied at the time of the visit due to work away from the home or market days. A total of 55 households were located using this method during the 10 days of fieldwork in May and June of 2012. CONCLUSIONS: The method used to generate and field locate random homes for surveys and water sampling was an effective means of selecting random households in a rural environment lacking geolocation infrastructure. The success rate for locating households using a handheld GPS was excellent and only rarely was local knowledge required to identify and locate households. This method provides an important technique that can be applied to other developing countries where a randomized study design is needed but infrastructure is lacking to implement more traditional participant selection methods.

Concepts: Geographic information system, Randomness, Map, Global Positioning System, Remote sensing, Surveying, Geodesy, Google Earth


Assessing oil pollution using traditional field-based methods over large areas is difficult and expensive. Remote sensing technologies with good spatial and temporal coverage might provide an alternative for monitoring oil pollution by recording the spectral signals of plants growing in polluted soils. Total petroleum hydrocarbon concentrations of soils and the hyperspectral canopy reflectance were measured in wetlands dominated by reeds (Phragmites australis) around oil wells that have been producing oil for approximately 10 years in the Yellow River Delta, eastern China to evaluate the potential of vegetation indices and red edge parameters to estimate soil oil pollution. The detrimental effect of oil pollution on reed communities was confirmed by the evidence that the aboveground biomass decreased from 1076.5 g m(-2) to 5.3 g m(-2) with increasing total petroleum hydrocarbon concentrations ranging from 9.45 mg kg(-1) to 652 mg kg(-1). The modified chlorophyll absorption ratio index (MCARI) best estimated soil TPH concentration among 20 vegetation indices. The linear model involving MCARI had the highest coefficient of determination (R(2) = 0.73) and accuracy of prediction (RMSE = 104.2 mg kg(-1)). For other vegetation indices and red edge parameters, the R(2) and RMSE values ranged from 0.64 to 0.71 and from 120.2 mg kg(-1) to 106.8 mg kg(-1) respectively. The traditional broadband normalized difference vegetation index (NDVI), one of the broadband multispectral vegetation indices (BMVIs), produced a prediction (R(2) = 0.70 and RMSE = 110.1 mg kg(-1)) similar to that of MCARI. These results corroborated the potential of remote sensing for assessing soil oil pollution in large areas. Traditional BMVIs are still of great value in monitoring soil oil pollution when hyperspectral data are unavailable.

Concepts: Petroleum, People's Republic of China, Approximation, Estimation, Remote sensing, Hyperspectral imaging, Yellow River, Landfill


Cloud cover can influence numerous important ecological processes, including reproduction, growth, survival, and behavior, yet our assessment of its importance at the appropriate spatial scales has remained remarkably limited. If captured over a large extent yet at sufficiently fine spatial grain, cloud cover dynamics may provide key information for delineating a variety of habitat types and predicting species distributions. Here, we develop new near-global, fine-grain (≈1 km) monthly cloud frequencies from 15 y of twice-daily Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images that expose spatiotemporal cloud cover dynamics of previously undocumented global complexity. We demonstrate that cloud cover varies strongly in its geographic heterogeneity and that the direct, observation-based nature of cloud-derived metrics can improve predictions of habitats, ecosystem, and species distributions with reduced spatial autocorrelation compared to commonly used interpolated climate data. These findings support the fundamental role of remote sensing as an effective lens through which to understand and globally monitor the fine-grain spatial variability of key biodiversity and ecosystem properties.

Concepts: Biodiversity, Life, Ecology, Natural environment, Ecosystem, Nature, Remote sensing, Ecological economics


Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha(-1). Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases.

Concepts: Climate change, Forestry, Remote sensing, Globalization, Global warming, Carbon capture and storage, Sierra Leone, Agroforestry


The IUCN Red List has assessed the global distributions of the majority of the world’s amphibians, birds and mammals. Yet these assessments lack explicit reference to widely available, remotely-sensed data that can sensibly inform a species' risk of extinction. Our first goal is to add additional quantitative data to the existing standardised process that IUCN employs. Secondly, we ask: do our results suggest species of concern-those at considerably greater risk than hitherto appreciated? Thirdly, these assessments are not only important on a species-by-species basis. By combining distributions of species of concern, we map conservation priorities. We ask to what degree these areas are currently protected and how might knowledge from remote sensing modify the priorities? Finally, we develop a quick and simple method to identify and modify the priority setting in a landscape where natural habitats are disappearing rapidly and so where conventional species' assessments might be too slow to respond. Tropical, mainland Southeast Asia is under exceptional threat, yet relatively poorly known. Here, additional quantitative measures may be particularly helpful. This region contains over 122, 183, and 214 endemic mammals, birds, and amphibians, respectively, of which the IUCN considers 37, 21, and 37 threatened. When corrected for the amount of remaining natural habitats within the known elevation preferences of species, the average sizes of species ranges shrink to <40% of their published ranges. Some 79 mammal, 49 bird, and 184 amphibian ranges are <20,000km2-an area at which IUCN considers most other species to be threatened. Moreover, these species are not better protected by the existing network of protected areas than are species that IUCN accepts as threatened. Simply, there appear to be considerably more species at risk than hitherto appreciated. Furthermore, incorporating remote sensing data showing where habitat loss is prevalent changes the locations of conservation priorities.

Concepts: Habitat, Southeast Asia, Species, Endangered species, Extinction, Remote sensing, Conservation, IUCN Red List


To date, the research community has failed to reach a consensus on the nature and significance of the relationship between climate variability and armed conflict. We argue that progress has been hampered by insufficient attention paid to the context in which droughts and other climatic extremes may increase the risk of violent mobilization. Addressing this shortcoming, this study presents an actor-oriented analysis of the drought-conflict relationship, focusing specifically on politically relevant ethnic groups and their sensitivity to growing-season drought under various political and socioeconomic contexts. To this end, we draw on new conflict event data that cover Asia and Africa, 1989-2014, updated spatial ethnic settlement data, and remote sensing data on agricultural land use. Our procedure allows quantifying, for each ethnic group, drought conditions during the growing season of the locally dominant crop. A comprehensive set of multilevel mixed effects models that account for the groups' livelihood, economic, and political vulnerabilities reveals that a drought under most conditions has little effect on the short-term risk that a group challenges the state by military means. However, for agriculturally dependent groups as well as politically excluded groups in very poor countries, a local drought is found to increase the likelihood of sustained violence. We interpret this as evidence of the reciprocal relationship between drought and conflict, whereby each phenomenon makes a group more vulnerable to the other.

Concepts: Climate, China, Climate change, Violence, Ethnic group, Remote sensing, Nation, War


The location and persistence of surface water (inland and coastal) is both affected by climate and human activity and affects climate, biological diversity and human wellbeing. Global data sets documenting surface water location and seasonality have been produced from inventories and national descriptions, statistical extrapolation of regional data and satellite imagery, but measuring long-term changes at high resolution remains a challenge. Here, using three million Landsat satellite images, we quantify changes in global surface water over the past 32 years at 30-metre resolution. We record the months and years when water was present, where occurrence changed and what form changes took in terms of seasonality and persistence. Between 1984 and 2015 permanent surface water has disappeared from an area of almost 90,000 square kilometres, roughly equivalent to that of Lake Superior, though new permanent bodies of surface water covering 184,000 square kilometres have formed elsewhere. All continental regions show a net increase in permanent water, except Oceania, which has a fractional (one per cent) net loss. Much of the increase is from reservoir filling, although climate change is also implicated. Loss is more geographically concentrated than gain. Over 70 per cent of global net permanent water loss occurred in the Middle East and Central Asia, linked to drought and human actions including river diversion or damming and unregulated withdrawal. Losses in Australia and the USA linked to long-term droughts are also evident. This globally consistent, validated data set shows that impacts of climate change and climate oscillations on surface water occurrence can be measured and that evidence can be gathered to show how surface water is altered by human activities. We anticipate that this freely available data will improve the modelling of surface forcing, provide evidence of state and change in wetland ecotones (the transition areas between biomes), and inform water-management decision-making.

Concepts: Precipitation, Climate, Hydrology, Data set, Middle East, Change, Human behavior, Remote sensing


Discrete trees and small groups of trees in nonforest settings are considered an essential resource around the world and are collectively referred to as trees outside forests (ToF). ToF provide important functions across the landscape, such as protecting soil and water resources, providing wildlife habitat, and improving farmstead energy efficiency and aesthetics. Despite the significance of ToF, forest and other natural resource inventory programs and geospatial land cover datasets that are available at a national scale do not include comprehensive information regarding ToF in the United States. Additional ground-based data collection and acquisition of specialized imagery to inventory these resources are expensive alternatives. As a potential solution, we identified two remote sensing-based approaches that use free high-resolution aerial imagery from the National Agriculture Imagery Program (NAIP) to map all tree cover in an agriculturally dominant landscape. We compared the results obtained using an unsupervised per-pixel classifier (independent component analysis-[ICA]) and an object-based image analysis (OBIA) procedure in Steele County, Minnesota, USA. Three types of accuracy assessments were used to evaluate how each method performed in terms of: (1) producing a county-level estimate of total tree-covered area, (2) correctly locating tree cover on the ground, and (3) how tree cover patch metrics computed from the classified outputs compared to those delineated by a human photo interpreter. Both approaches were found to be viable for mapping tree cover over a broad spatial extent and could serve to supplement ground-based inventory data. The ICA approach produced an estimate of total tree cover more similar to the photo-interpreted result, but the output from the OBIA method was more realistic in terms of describing the actual observed spatial pattern of tree cover.

Concepts: Tree, Natural resource, Trees, Remote sensing, Aerial photography, National Agriculture Imagery Program