Discover the most talked about and latest scientific content & concepts.

Concept: Reducing agent


The aim of this study was to examine the effect of ACS14, a hydrogen sulfide (H(2)S)-releasing derivative of aspirin (Asp), on Asp-induced gastric injury. Gastric hemorrhagic lesions were induced by intragastric administration of Asp (200 mg/kg, suspended in 0.5% carboxymethyl cellulose solutions) in a volume of 1 ml/100 g body weight. ACS14 (1, 5 or 10 mg/kg) was given 30 min before the Asp administration. The total area of gastric erosions, H(2)S concentration and oxidative stress in gastric tissues were measured three hours after administration of Asp. Treatment with Asp (200 mg/kg), but not ACS14 (430 mg/kg, at equimolar doses to 200 mg/kg Asp), for 3 h significantly increased gastric mucosal injury. The damage caused by Asp was reversed by ACS14 at 1-10 mg/kg in a concentration-dependent manner. ACS14 abrogated Asp-induced upregulation of COX-2 expression, but had no effect on the reduced PGE(2) level. ACS14 reversed the decreased H(2)S concentrations and blood flow in the gastric tissue in Asp-treated rats. Moreover, ACS14 attenuated Asp-suppressed superoxide dismutase-1 (SOD-1) expression and GSH activity, suggesting that ACS14 may stimulate antioxidants in the gastric tissue. ACS14 also obviously inhibited Asp-induced upregulation of protein expression of oxidases including XOD, p47(phox) and p67(phox). In conclusion, ACS14 protects Asp induced gastric mucosal injury by inhibiting oxidative stress in the gastric tissue.

Concepts: Photosynthesis, Blood, Antioxidant, Hydrogen, Redox, Oxidative stress, Electrochemistry, Reducing agent


Tween 80 (polysorbate 80) has been used as a reducing agent and protecting agent to prepare stable water-soluble silver nanoparticles on a large scale through a one-pot process, which is simple and environmentally friendly. Silver ions can accelerate the oxidation of Tween 80 and then get reduced in the reaction process. The well-ordered arrays such as ribbon-like silver nanostructures could be obtained by adjusting the reaction conditions. High-resolution transmission electron microscopy confirms that ribbon-like silver nanostructures (approximately 50 nm in length and approximately 2 mum in width) are composed of a large number of silver nanocrystals with a size range of 2 to 3 nm. In addition, negative absorbance around 320 nm in the UV-visible spectra of silver nanoparticles has been observed, probably owing to the instability of nanosized silver colloids.

Concepts: Electron, Hydrogen, Redox, Oxidizing agent, Nanotechnology, Reducing agent, Polysorbate 80, Polysorbate


The opioid overdose epidemic is a major threat to the public’s health, resulting in the development and implementation of a variety of strategies to reduce fatal overdose [1-3]. Many strategies are focused on primary prevention and increased access to effective treatment, although the past decade has seen an exponential increase in harm reduction initiatives. To maximize identification of opportunities for intervention, initiatives focusing on prevention, access to effective treatment, and harm reduction are examined independently, although considerable overlap exists. Particular attention is given to harm reduction approaches, as increased public and political will have facilitated widespread implementation of several initiatives, including increased distribution of naloxone and policy changes designed to increase bystander assistance during a witnessed overdose [4-7].

Concepts: Public health, Naloxone, Reducing agent


Mosquitoes are exposed to oxidative challenges throughout their life cycle. The primary challenge comes from a blood meal. The blood digestion turns the midgut into an oxidative environment, which imposes pressure not only on mosquito fecundity and other physiological traits but also on the microbiota in the midgut. During evolution, mosquitoes have developed numerous oxidative defense mechanisms to maintain redox homeostasis in the midgut. In addition to antioxidants, SOD, catalase, and glutathione system, sufficient supply of the reducing agent, NADPH, is vital for a successful defense against oxidative stress. Increasing evidence indicates that in response to oxidative stress, cells reconfigure metabolic pathways to increase the generation of NADPH through NADP-reducing networks including the pentose phosphate pathway and others. The microbial homeostasis is critical for the functional contributions to various host phenotypes. The symbiotic microbiota is regulated largely by the Duox-ROS pathway in Drosophila. In mosquitoes, Duox-ROS pathway, heme-mediated signaling, antimicrobial peptide production and C-type lectins work in concert to maintain the dynamic microbial community in the midgut. Microbial mechanisms against oxidative stress in this context are not well understood. Emerging evidence that microbial metabolites trigger host oxidative response warrants further study on the metagenomic interplay in an oxidative environment like mosquito gut ecosystem. Besides the classical Drosophila model, hematophagous insects like mosquitoes provide an alternative model system to study redox homeostasis in a symbiotic metagenomic context.

Concepts: Photosynthesis, Bacteria, Metabolism, Enzyme, Insect, Redox, Reducing agent, Pentose phosphate pathway


Thin-film elastomers (elastic polymers) have a number of technologically significant applications ranging from sportswear to medical devices. In this work, we demonstrate that graphene can be used to reinforce 20 micron thin elastomer films, resulting in over 50% increase in elastic modulus at a very low loading of 0.1 wt%, while also increasing the elongation to failure. This loading is below the percolation threshold for electrical conductivity. We demonstrate composites with both graphene oxide and reduced graphene oxide, the reduction being undertaken in-situ or ex-situ using a biocompatible reducing agent in ascorbic acid. The ultrathin films were cast by dip moulding. The transparency of the elastomer films allows us to use optical microscopy image and confirm the uniform distribution as well as the conformation of the graphene flakes within the composite.

Concepts: Carbon dioxide, Hydrogen, Redox, Oxidizing agent, Electrochemistry, Nitrogen, Vitamin C, Reducing agent


Many people identified as having common mental disorders in community surveys do not receive treatment. Modelling has suggested that closing this “treatment gap” should reduce the population prevalence of those disorders. To evaluate the effects of reducing the treatment gap in industrialized countries, data from 1990 to 2015 were reviewed from four English-speaking countries: Australia, Canada, England and the US. These data show that the prevalence of mood and anxiety disorders and symptoms has not decreased, despite substantial increases in the provision of treatment, particularly antidepressants. Several hypotheses for this lack of improvement were considered. There was no support for the hypothesis that reductions in prevalence due to treatment have been masked by increases in risk factors. However, there was little evidence relevant to the hypothesis that improvements have been masked by increased reporting of symptoms because of greater public awareness of common mental disorders or willingness to disclose. A more strongly supported hypothesis for the lack of improvement is that much of the treatment provided does not meet the minimal standards of clinical practice guidelines and is not targeted optimally to those in greatest need. Lack of attention to prevention of common mental disorders may also be a factor. Reducing the prevalence of common mental disorders remains an unsolved challenge for health systems globally, which may require greater attention to the “quality gap” and “prevention gap”. There is also a need for nations to monitor outcomes by using standardized measures of service provision and mental disorders over time.

Concepts: Psychology, Improve, Hypothesis, Mental disorder, Selective serotonin reuptake inhibitor, Abnormal psychology, Anxiety disorder, Reducing agent


Tropical deforestation is responsible for around one tenth of total anthropogenic carbon emissions, and tropical protected areas (PAs) that reduce deforestation can therefore play an important role in mitigating climate change and protecting biodiversity and ecosystem services. While the effectiveness of PAs in reducing deforestation has been estimated, the impact on global carbon emissions remains unquantified. Here we show that tropical PAs overall reduced deforestation carbon emissions by 4.88 Pg, or around 29%, between 2000 and 2012, when compared to expected rates of deforestation controlling for spatial variation in deforestation pressure. The largest contribution was from the tropical Americas (368.8 GgC y(-1)), followed by Asia (25.0 GgC y(-1)) and Africa (12.7 GgC y(-1)). Variation in PA effectiveness is largely driven by local factors affecting individual PAs, rather than designations assigned by governments.

Concepts: Carbon dioxide, Biodiversity, Redox, Ecosystem, Climate change, Reducing agent, Greenhouse gas, Global warming


The ability to encode, retain, and implement instructions within working memory is central to many behaviours, including classroom activities which underpin learning. The three experiments presented here explored how action-planned, enacted, and observed-impacted 6- to 10-year-old’s ability to follow instructions. Experiment 1 (N = 81) found enacted recall was superior to verbal recall, but self-enactment at encoding had a negative effect on enacted recall and verbal recall. In contrast, observation of other-enactment (demonstration) at encoding facilitated both types of recall (Experiment 2a: N = 81). Further, reducing task demands through a reduced set of possible actions (Experiment 2b; N = 64) led to a positive effect of self-enactment at encoding for later recall (both verbal and enacted). Expecting to enact at recall may lead to the creation of an imaginal spatial-motoric plan at encoding that boosts later recall. However, children’s ability to use the additional spatial-motoric codes generated via self-enactment at encoding depends on the demands the task places on central executive resources. Demonstration at encoding appears to reduce executive demands and enable use of these additional forms of coding.

Concepts: Experiment, Hypothesis, Negative feedback, Reducing agent, Working memory, Executive functions


Reaction of L(0)NiBr(2) with 2 equiv of NaH yielded the Ni(II) hydride complex [(L(•-))Ni(μ-H)(2)Ni(L(•-))] (1) (L = [(2,6-iPr(2)C(6)H(3))NC(Me)](2); L(0) represents the neutral ligand, L(•-) is its radical-anionic form, and L(2-) denotes the dianion) in good yield. Stepwise reduction of complex 1 led to a series of nickel hydrides. Reduction of 1 with 1 equiv of sodium metal afforded a singly reduced species [Na(DME)(3)][(L(•-))Ni(μ-H)(2)Ni(L(•-))] (2a) (DME = 1,2-dimethoxyethane), which contains a mixed-valent core [Ni(μ-H)(2)Ni](+). With 2 equiv of Na a doubly reduced species [Na(DME)](2)[L(2-)Ni(μ-H)(2)NiL(2-)] (3a) was obtained, in which each monoanion (L(•-)) in the precursor 1 has been reduced to L(2-). By using potassium as the reducing agent, two analogous species [K(DME)(4)][(L(•-))Ni(μ-H)(2)Ni(L(•-))] (2b) and [K(DME)](2)[L(2-)Ni(μ-H)(2)NiL(2-)] (3b) were obtained. Further treatment of 3b with 2 equiv of K led to a trinuclear complex [K(DME)(THF)](2)K(2)[L(2-)Ni(μ-H)(2)Ni(μ-H)(2)NiL(2-)] (4), which contains one Ni(II) and two Ni(I) centers with a triplet ground state. When 1 and 3a were warmed in toluene or benzene, respectively, three reverse-sandwich dinickel complexes, [(L(•-))Ni(μ-η(3):η(3)-C(7)H(8))Ni(L(•-))] (5) and [Na(DME)](2)[L(2-)Ni(μ-η(3):η(3)-C(6)H(5)R)NiL(2-)] (6: R = CH(3); 7: R = H), were isolated. Reaction of 1 with Me(3)SiN(3) gave the N(3)-bridged complex [(L(•-))Ni(μ-η(1)-N(3))(2)Ni(L(•-))] (8). The crystal structures of complexes 1-8 have been determined by X-ray diffraction, and their electronic structures have been fully studied by EPR/NMR spectroscopy.

Concepts: Hydrogen, Redox, Oxidizing agent, Ion, Hydride, Sodium, Reducing agent, Sodium hydride


The ratio of redox active species contributes to the researches about marine systems in many ways. Are marine systems reductant or oxidant? For this purpose, redox active species are analyzed by using high technology instrumental analyzers such as AAS, ICP, and HPLC. Then, all ion pair species are compared to each by calculating their ratios. These technologies are very expensive, and it takes long time to obtain the results. In this study, we suggested a basic method by using pH and Eh. Therefore, the Nernst equation expression was rearranged by using relative hydrogen (rH) and electrostatic activity coefficient (F(el)). Additionally, the ratio of the redox active ion pair species Se(IV)/Se(VI) and As(III)/As(V) was calculated.

Concepts: Hydrogen, Redox, Electrochemistry, Ratio, Reducing agent, Nernst equation, Walther Nernst, Standard electrode potential