Discover the most talked about and latest scientific content & concepts.

Concept: Red Sea


The phenomenon of coral fluorescence in mesophotic reefs, although well described for shallow waters, remains largely unstudied. We found that representatives of many scleractinian species are brightly fluorescent at depths of 50-60 m at the Interuniversity Institute for Marine Sciences (IUI) reef in Eilat, Israel. Some of these fluorescent species have distribution maxima at mesophotic depths (40-100 m). Several individuals from these depths displayed yellow or orange-red fluorescence, the latter being essentially absent in corals from the shallowest parts of this reef. We demonstrate experimentally that in some cases the production of fluorescent pigments is independent of the exposure to light; while in others, the fluorescence signature is altered or lost when the animals are kept in darkness. Furthermore, we show that green-to-red photoconversion of fluorescent pigments mediated by short-wavelength light can occur also at depths where ultraviolet wavelengths are absent from the underwater light field. Intraspecific colour polymorphisms regarding the colour of the tissue fluorescence, common among shallow water corals, were also observed for mesophotic species. Our results suggest that fluorescent pigments in mesophotic reefs fulfil a distinct biological function and offer promising application potential for coral-reef monitoring and biomedical imaging.

Concepts: Ultraviolet, Species, Light, Coral, Coral reef, Scleractinia, Red Sea, Eilat


Green Fluorescent Proteins (GFPs) have been reported from a wide diversity of medusae, but only a few observations of green fluorescence have been reported for hydroid colonies. In this study, we report on fluorescence displayed by hydroid polyps of the genus Cytaeis Eschscholtz, 1829 (Hydrozoa: Anthoathecata: Filifera) found at night time in the southern Red Sea (Saudi Arabia) living on shells of the gastropod Nassarius margaritifer (Dunker, 1847) (Neogastropoda: Buccinoidea: Nassariidae). We examined the fluorescence of these polyps and compare with previously reported data. Intensive green fluorescence with a spectral peak at 518 nm was detected in the hypostome of the Cytaeis polyps, unlike in previous reports that reported fluorescence either in the basal parts of polyps or in other locations on hydroid colonies. These results suggest that fluorescence may be widespread not only in medusae, but also in polyps, and also suggests that the patterns of fluorescence localization can vary in closely related species. The fluorescence of polyps may be potentially useful for field identification of cryptic species and study of geographical distributions of such hydroids and their hosts.

Concepts: Saudi Arabia, Cnidaria, Jellyfish, Polyp, Hydrozoa, Yemen, Red Sea, Jeddah


Rare mitochondrial lineages with relict distributions can sometimes be disproportionately informative about deep events in human prehistory. We have studied one such lineage, haplogroup R0a, which uniquely is most frequent in Arabia and the Horn of Africa, but is distributed much more widely, from Europe to India. We conclude that: (1) the lineage ancestral to R0a is more ancient than previously thought, with a relict distribution across the Mediterranean/Southwest Asia; (2) R0a has a much deeper presence in Arabia than previously thought, highlighting the role of at least one Pleistocene glacial refugium, perhaps on the Red Sea plains; (3) the main episode of dispersal into Eastern Africa, at least concerning maternal lineages, was at the end of the Late Glacial, due to major expansions from one or more refugia in Arabia; (4) there was likely a minor Late Glacial/early postglacial dispersal from Arabia through the Levant and into Europe, possibly alongside other lineages from a Levantine refugium; and (5) the presence of R0a in Southwest Arabia in the Holocene at the nexus of a trading network that developed after ~3 ka between Africa and the Indian Ocean led to some gene flow even further afield, into Iran, Pakistan and India.

Concepts: Human, Africa, Indian Ocean, Jordan, Prehistory, Red Sea, Levant, Somalia


Coral communities in the Persian/Arabian Gulf (PAG) withstand unusually high salinity levels and regular summer temperature maxima of up to ∼35 °C that kill conspecifics elsewhere. Due to the recent formation of the PAG and its subsequent shift to a hot climate, these corals have had only <6,000 y to adapt to these extreme conditions and can therefore inform on how coral reefs may respond to global warming. One key to coral survival in the world's warmest reefs are symbioses with a newly discovered alga,Symbiodinium thermophilum Currently, it is unknown whether this symbiont originated elsewhere or emerged from unexpectedly fast evolution catalyzed by the extreme environment. Analyzing genetic diversity of symbiotic algae across >5,000 km of the PAG, the Gulf of Oman, and the Red Sea coastline, we show thatS. thermophilumis a member of a highly diverse, ancient group of symbionts cryptically distributed outside the PAG. We argue that the adjustment to temperature extremes by PAG corals was facilitated by the positive selection of preadapted symbionts. Our findings suggest that maintaining the largest possible pool of potentially stress-tolerant genotypes by protecting existing biodiversity is crucial to promote rapid adaptation to present-day climate change, not only for coral reefs, but for ecosystems in general.

Concepts: Algae, Evolution, Symbiosis, Coral, Coral reef, Climate change, Persian Gulf, Red Sea


Petroleum oil is an important source for the energy in the world. The Gulf of Suez, Nile Delta and South Valley are important regions for studying hydrocarbon potential in Egypt. A thorium normalization technique was applied on the sandstone reservoirs in the three regions to determine the hydrocarbon potentialities zones using the three spectrometric radioactive gamma ray-logs (eU, eTh and K% logs). The conventional well logs (gamma-ray, deep resistivity, shallow resistivity, neutron, density and sonic logs) are analyzed to determine the net pay zones in these wells. Indices derived from thorium normalized spectral logs indicate the hydrocarbon zones in petroleum reservoirs. The results of this technique in the three regions (Gulf of Suez, Nile Delta and South Valley) are in agreement with the results of the conventional well log analyses by ratios of 82%, 78% and 71% respectively.

Concepts: Energy, Radioactive decay, Nuclear fission, Egypt, Red Sea, Nile, Nile Delta, Suez Canal


The endosymbiosis between Symbiodinium dinoflagellates and stony corals provides the foundation of coral reef ecosystems. The survival of these ecosystems is under threat at a global scale, and better knowledge is needed to conceive strategies for mitigating future reef loss. Environmental disturbance imposing temperature, salinity, and nutrient stress can lead to the loss of the Symbiodinium partner, causing so-called coral bleaching. Some of the most thermotolerant coral-Symbiodinium associations occur in the Persian/Arabian Gulf and the Red Sea, which also represent the most saline coral habitats. We studied whether Symbiodinium alter their metabolite content in response to high-salinity environments. We found that Symbiodinium cells exposed to high salinity produced high levels of the osmolyte 2-O-glycerol-α-d-galactopyranoside (floridoside), both in vitro and in their coral host animals, thereby increasing their capacity and, putatively, the capacity of the holobiont to cope with the effects of osmotic stress in extreme environments. Given that floridoside has been previously shown to also act as an antioxidant, this osmolyte may serve a dual function: first, to serve as a compatible organic osmolyte accumulated by Symbiodinium in response to elevated salinities and, second, to counter reactive oxygen species produced as a consequence of potential salinity and heat stress.

Concepts: Algae, Symbiosis, Coral, Coral reef, Endosymbiont, Coral bleaching, Red Sea, Zooxanthella


The physical-chemical stage of marginal filters in minor rivers of the White Sea catchment area by the example of the Umba River, flowing to Kandalaksha Gulf, has been explored. Application of the method of physical-chemical modeling on the basis of field data allowed establishing migration forms of a number of elements in the “river-sea” system and deposition of solid phases when mixing waters. The mixing of river and sea water is accompanied by the sedimentation of predominantly goethite, hydromuscovite, and hydroxylapatite. Sediments in mixing river and sea waters were found to be mainly composed by goethite, hydromuscovite, and hydroxylapatite. The research has added to the knowledge of the role of the abiotic part in the marginal filters of small rivers in the Arctic.

Concepts: Water, Sediment, Sedimentary rock, River, Red Sea, Sediment transport, White Sea, Kandalaksha Gulf


Coral reefs rely on inter-habitat connectivity to maintain gene flow, biodiversity and ecosystem resilience. Coral reef communities of the Red Sea exhibit remarkable genetic homogeneity across most of the Arabian Peninsula coastline, with a genetic break towards the southern part of the basin. While previous studies have attributed these patterns to environmental heterogeneity, we hypothesize that they may also emerge as a result of dynamic circulation flow; yet, such linkages remain undemonstrated. Here, we integrate satellite-derived biophysical observations, particle dispersion model simulations, genetic population data and ship-borne in situ profiles to assess reef connectivity in the Red Sea. We simulated long-term (>20 yrs.) connectivity patterns driven by remotely-sensed sea surface height and evaluated results against estimates of genetic distance among populations of anemonefish, Amphiprion bicinctus, along the eastern Red Sea coastline. Predicted connectivity was remarkably consistent with genetic population data, demonstrating that circulation features (eddies, surface currents) formulate physical pathways for gene flow. The southern basin has lower physical connectivity than elsewhere, agreeing with known genetic structure of coral reef organisms. The central Red Sea provides key source regions, meriting conservation priority. Our analysis demonstrates a cost-effective tool to estimate biophysical connectivity remotely, supporting coastal management in data-limited regions.

Concepts: Biology, Coral reef, Saudi Arabia, Arabian Peninsula, Coastal and oceanic landforms, Yemen, Red Sea, Arabian Sea


Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade(-1) over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century(1). However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea’s thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade(-1), while the northern Red Sea is warming between 0.40 and 0.45 °C decade(-1), all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

Concepts: Time, Oceanography, Coral reef, Climate, Temperature, Ocean, Red Sea, Sea surface temperature


The Gammaproteobacteria Endozoicomonas were found highly associated with the coral Stylophora pistillata, and these bacteria are also ubiquitously associated with diverse, worldwide corals. Novel Endozoicomonas-specific probes revealed that Endozoicomonas were abundant in the endodermal tissues of S. pistillata, and appear to have an intimate relationship with the coral.

Concepts: Coral reef, Interpersonal relationship, Red Sea, Eilat, 2002 in music