SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Rechargeable battery

193

Current lithium batteries operate on inorganic insertion compounds to power a diverse range of applications, but recently there is a surging demand to develop environmentally friendly green electrode materials. To develop sustainable and eco-friendly lithium ion batteries, we report reversible lithium ion storage properties of a naturally occurring and abundant organic compound purpurin, which is non-toxic and derived from the plant madder. The carbonyl/hydroxyl groups present in purpurin molecules act as redox centers and reacts electrochemically with Li-ions during the charge/discharge process. The mechanism of lithiation of purpurin is fully elucidated using NMR, UV and FTIR spectral studies. The formation of the most favored six membered binding core of lithium ion with carbonyl groups of purpurin and hydroxyl groups at C-1 and C-4 positions respectively facilitated lithiation process, whereas hydroxyl group at C-2 position remains unaltered.

Concepts: Functional group, Battery, Rechargeable battery, Carbohydrate, Lithium-ion battery, Lithium, Lithium battery, Lithium-ion polymer battery

170

New energy industry including electric vehicles and large-scale energy storage in smart grids requires energy storage systems of good safety, high reliability, high energy density and low cost. Here a coated Li metal is used as anode for an aqueous rechargeable lithium battery (ARLB) combining LiMnO as cathode and 0.5 mol l LiSO aqueous solution as electrolyte. Due to the “cross-over” effect of Li ions in the coating, this ARLB delivers an output voltage of about 4.0 V, a big breakthrough of the theoretic stable window of water, 1.229 V. Its cycling is very excellent with Coulomb efficiency of 100% except in the first cycle. Its energy density can be 446 Wh kg, about 80% higher than that for traditional lithium ion battery. Its power efficiency can be above 95%. Furthermore, its cost is low and safety is much reliable. It provides another chemistry for post lithium ion batteries.

Concepts: Cathode, Battery, Rechargeable battery, Lithium-ion battery, Lithium, Lithium battery, Nanowire battery, Energy storage

169

We demonstrate a simple, efficient, yet versatile strategy for the synthesis of novel hierarchical heterostructures composed of TiO(2) nanofiber stem and various metal oxides (MOs) secondary nanostructures, including Co(3)O(4), Fe(2)O(3), Fe(3)O(4), and CuO, by advantageously combining the versatility of the electrospinning technique and hydrothermal growth method, for which the controllable formation process and possible formation mechanism are also investigated. Moreover, as a proof-of-concept demonstration of the functional properties of these hierarchical heterostructures, the Co(3)O(4)/TiO(2) hierarchical heterostructures are investigated as the lithium-ion batteries (LIBs) anode materials for the first time, which not only delivers a high reversible capacity of 632.5 mAh g(-1) and 95.3% capacity retention over 480 cycles, but also shows excellent rate capability with respect to the pristine TiO(2) nanofibers. The synergetic effect between Co(3)O(4) and TiO(2) as well as the unique feature of hierarchical heterostructures are probably responsible for the enhanced electrochemical performance.

Concepts: Battery, Rechargeable battery, Lithium-ion battery, Lithium, Lithium battery, Lithium-ion polymer battery, Electric car, Lithium-ion batteries

168

Destructive gas generation with associated swelling has been a major challenge to the large-scale application of lithium ion batteries (LIBs) made from Li(4)Ti(5)O(12) (LTO) anodes. Here we report root causes of the gassing behavior, and suggest remedy to suppress it. The generated gases mainly contain H(2), CO(2) and CO, which originate from interfacial reactions between LTO and surrounding alkyl carbonate solvents. The reactions occur at the very thin outermost surface of LTO (111) plane, which result in transformation from (111) to (222) plane and formation of (101) plane of anatase TiO(2). A nanoscale carbon coating along with a stable solid electrolyte interface (SEI) film around LTO is seen most effective as a barrier layer in suppressing the interfacial reaction and resulting gassing from the LTO surface. Such an ability to tune the interface nanostructure of electrodes has practical implications in the design of next-generation high power LIBs.

Concepts: Cathode, Electrochemistry, Solid, Battery, Rechargeable battery, Lithium-ion battery, Lithium, Lithium battery

155

Although the energy densities of batteries continue to increase, safety problems (for example, fires and explosions) associated with the use of highly flammable liquid organic electrolytes remain a big issue, significantly hindering further practical applications of the next generation of high-energy batteries. We have fabricated a novel “smart” nonwoven electrospun separator with thermal-triggered flame-retardant properties for lithium-ion batteries. The encapsulation of a flame retardant inside a protective polymer shell has prevented direct dissolution of the retardant agent into the electrolyte, which would otherwise have negative effects on battery performance. During thermal runaway of the lithium-ion battery, the protective polymer shell would melt, triggered by the increased temperature, and the flame retardant would be released, thus effectively suppressing the combustion of the highly flammable electrolytes.

Concepts: Water, Temperature, Physical chemistry, Rechargeable battery, Lithium-ion battery, Lithium, Lithium battery, Fire

92

The conversion of allergic pollen grains into carbon microstructures was carried out through a facile, one-step, solid-state pyrolysis process in an inert atmosphere. The as-prepared carbonaceous particles were further air activated at 300 °C and then evaluated as lithium ion battery anodes at room (25 °C) and elevated (50 °C) temperatures. The distinct morphologies of bee pollens and cattail pollens are resembled on the final architecture of produced carbons. Scanning Electron Microscopy images shows that activated bee pollen carbon (ABP) is comprised of spiky, brain-like, and tiny spheres; while activated cattail pollen carbon (ACP) resembles deflated spheres. Structural analysis through X-ray diffraction and Raman spectroscopy confirmed their amorphous nature. X-ray photoelectron spectroscopy analysis of ABP and ACP confirmed that both samples contain high levels of oxygen and small amount of nitrogen contents. At C/10 rate, ACP electrode delivered high specific lithium storage reversible capacities (590 mAh/g at 50 °C and 382 mAh/g at 25 °C) and also exhibited excellent high rate capabilities. Through electrochemical impedance spectroscopy studies, improved performance of ACP is attributed to its lower charge transfer resistance than ABP. Current studies demonstrate that morphologically distinct renewable pollens could produce carbon architectures for anode applications in energy storage devices.

Concepts: Electron, Spectroscopy, Cathode, Electrochemistry, Battery, Rechargeable battery, Lithium-ion battery, Lithium

59

Every year many tons of waste glass end up in landfills without proper recycling, which aggravates the burden of waste disposal in landfill. The conversion from un-recycled glass to favorable materials is of great significance for sustainable strategies. Recently, silicon has been an exceptional anode material towards large-scale energy storage applications, due to its extraordinary lithiation capacity of 3579 mAh g(-1) at ambient temperature. Compared with other quartz sources obtained from pre-leaching processes which apply toxic acids and high energy-consuming annealing, an interconnected silicon network is directly derived from glass bottles via magnesiothermic reduction. Carbon-coated glass derived-silicon (gSi@C) electrodes demonstrate excellent electrochemical performance with a capacity of ~1420 mAh g(-1) at C/2 after 400 cycles. Full cells consisting of gSi@C anodes and LiCoO2 cathodes are assembled and achieve good initial cycling stability with high energy density.

Concepts: Cathode, Electrochemistry, Waste management, Battery, Electrolysis, Rechargeable battery, Recycling, Energy storage

59

We have produced stretchable lithium-ion batteries (LIBs) using the concept of kirigami, i.e., a combination of folding and cutting. The designated kirigami patterns have been discovered and implemented to achieve great stretchability (over 150%) to LIBs that are produced by standardized battery manufacturing. It is shown that fracture due to cutting and folding is suppressed by plastic rolling, which provides kirigami LIBs excellent electrochemical and mechanical characteristics. The kirigami LIBs have demonstrated the capability to be integrated and power a smart watch, which may disruptively impact the field of wearable electronics by offering extra physical and functionality design spaces.

Concepts: Rechargeable battery, Design, Recyclable materials, Lithium-ion battery, Lithium, Lithium battery

58

This work demonstrates an attractive low-cost route to obtain large area and high-quality graphene films by using the ultra-smooth copper foils which are typically used as the negative electrodes in lithium-ion batteries. We first compared the electronic transport properties of our new graphene film with the one synthesized by using commonly used standard copper foils in chemical vapor deposition (CVD). We observed a stark improvement in the electrical performance of the transistors realized on our graphene films. To study the optical properties on large area, we transferred CVD based graphene to transparent flexible substrates using hot lamination method and performed large area optical scanning. We demonstrate the promise of our high quality graphene films for large areas with ~400 cm(2) flexible optical modulators. We obtained a profound light modulation over a broad spectrum by using the fabricated large area transparent graphene supercapacitors and we compared the performance of our devices with the one based on graphene from standard copper. We propose that the copper foils used in the lithium-ion batteries could be used to obtain high-quality graphene at much lower-cost, with the improved performance of electrical transport and optical properties in the devices made from them.

Concepts: Optics, Semiconductor, Chemical vapor deposition, Rechargeable battery, Lithium-ion battery, Electronics, Photonics, Optoelectronics

43

Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas-solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high as 301 mAh g(-1) with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g(-1) still remains without any obvious decay in voltage. This study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries.

Concepts: Cathode, Oxygen, Oxide, Ion, Rechargeable battery, Lithium-ion battery, Lithium, Lithium-ion polymer battery