Discover the most talked about and latest scientific content & concepts.

Concept: Real analysis


Motor skill memory is first encoded online in a fragile form during practice and then converted into a stable form by offline consolidation, which is the behavioral stage critical for successful learning. Praise, a social reward, is thought to boost motor skill learning by increasing motivation, which leads to increased practice. However, the effect of praise on consolidation is unknown. Here, we tested the hypothesis that praise following motor training directly facilitates skill consolidation. Forty-eight healthy participants were trained on a sequential finger-tapping task. Immediately after training, participants were divided into three groups according to whether they received praise for their own training performance, praise for another participant’s performance, or no praise. Participants who received praise for their own performance showed a significantly higher rate of offline improvement relative to other participants when performing a surprise recall test of the learned sequence. On the other hand, the average performance of the novel sequence and randomly-ordered tapping did not differ between the three experimental groups. These results are the first to indicate that praise-related improvements in motor skill memory are not due to a feedback-incentive mechanism, but instead involve direct effects on the offline consolidation process.

Concepts: Psychology, Series, Skill, Training, Practice, Sequence, Learning, Real analysis


BACKGROUND: Experimental datasets are becoming larger and increasingly complex, spanning different data domains, thereby expanding the requirements for respective tool support for their analysis. Networks provide a basis for the integration, analysis and visualization of multi-omics experimental datasets. RESULTS: Here we present VANTED (version 2), a framework for systems biology applications, which comprises a comprehensive set of seven main tasks. These range from network reconstruction, data visualization, integration of various data types, network simulation to data exploration combined with a manifold support of systems biology standards for visualization and data exchange. The offered set of functionalities is instantiated by combining several tasks in order to enable users to view and explore a comprehensive dataset from different perspectives. We describe the system as well as an exemplary workflow. CONCLUSIONS: VANTED is a stand-alone framework which supports scientists during the data analysis and interpretation phase. It is available as a Java open source tool from

Concepts: Statistics, Mathematics, Data, Data set, Data analysis, Data mining, Open source, Real analysis


Presenilins (PSs) are the catalytic core of gamma-secretase complex. However, the mechanism of FAD-associated PS mutations in AD pathogenesis still remains elusive. Here we review the general biology and mechanism of gamma-secretase and focus on the catalytic components – presenilins and their biological functions and contributions to the AD pathogenesis. The functions of presenilins are divided into gamma-secretase dependent and gamma-secretase independent ones. The gamma-secretase dependent functions of presenilins are exemplified by the sequential cleavages in the processing of APP and Notch; the gamma-secretase independent functions of presenilins include stabilizing beta-catenin in Wnt signaling pathway, regulating calcium homeostasis and their interaction with synaptic transmission.

Concepts: Alzheimer's disease, DNA, Biology, Organism, Physiology, Amyloid precursor protein, Presenilin, Real analysis


Most imaging studies in the biological sciences rely on analyses that are relatively simple. However, manual repetition of analysis tasks across multiple regions in many images can complicate even the simplest analysis, making record keeping difficult, increasing the potential for error, and limiting reproducibility. While fully automated solutions are necessary for very large data sets, they are sometimes impractical for the small- and medium-sized data sets common in biology. Here we present the Slide Set plugin for ImageJ, which provides a framework for reproducible image analysis and batch processing. Slide Set organizes data into tables, associating image files with regions of interest and other relevant information. Analysis commands are automatically repeated over each image in the data set, and multiple commands can be chained together for more complex analysis tasks. All analysis parameters are saved, ensuring transparency and reproducibility. Slide Set includes a variety of built-in analysis commands and can be easily extended to automate other ImageJ plugins, reducing the manual repetition of image analysis without the set-up effort or programming expertise required for a fully automated solution.

Concepts: Scientific method, Biology, Function, Data set, Mathematical analysis, Computer program, Complex analysis, Real analysis


As the cost of sequencing continues to decrease and the amount of sequence data generated grows, new paradigms for data storage and analysis are increasingly important. The relative scaling behavior of these evolving technologies will impact genomics research moving forward.

Concepts: Series, Topology, Sequence, Computer data storage, The Real, Real analysis, Limit of a sequence, Cauchy sequence


A new strategy for the synthesis of tetrahydroquinolines (THQs) via the sequential functionalizations of remote C-H bonds is reported. This method uses a single picolinamide directing/protecting group to effect Pd-catalyzed γ-C(sp(3))-H arylation, metal-free ε-C(sp(2))-H iodination, and Cu-catalyzed intramolecular C-N cross-coupling. The overall sequence is efficient and versatile, and offers a streamlined synthesis of THQs with complex substitution patterns from readily available aryl iodide and aliphatic amine precursors.

Concepts: Amine, Series, Mathematical analysis, Sequence, Aryl, Set, Real analysis, Aziridine


We report a detailed binding study addressing both the thermodynamics and kinetics of binding of a large set of guest molecules - with widely varying properties - to a water-soluble metal-organic M4L6 host. The effects of different guest properties upon binding strength and kinetics are elucidated by a systematic analysis of the binding data through principal component analysis, thus allowing for structure-property relationships to be determined. These insights allowed us to design more complex encapsulation sequences, in which multiple guests, added simultaneously, are bound and released by the host in a time-dependent manner, thus allowing multiple states of the system to be accessed sequentially. Moreover, by inclusion of the pH-sensitive guest pyridine we were able to further extend our control over binding by creating a reversible pH-controlled three-guest sequential binding cycle.

Concepts: Series, Mathematical analysis, Sequence, Principal component analysis, Natural number, Set, Real analysis, Limit of a sequence


Video-assisted gait kinetics analysis has been a sensitive method to assess rat sciatic nerve function after injury and repair. However, in conduit repair of sciatic nerve defects, previously reported kinematic measurements failed to be a sensitive indicator because of the inferior recovery and inevitable joint contracture.

Concepts: Programming language, Lambda calculus, Parameter, Functional analysis, Lazy evaluation, Real analysis, Currying


Biomacromolecules rely on the precise placement of monomers to encode information for structure, function, and physiology. Efforts to emulate this complexity via the synthetic control of chemical sequence in polymers are finding success; however, there is little understanding of how to translate monomer sequence to physical material properties. Here we establish design rules for implementing this sequence-control in materials known as complex coacervates. These materials are formed by the associative phase separation of oppositely charged polyelectrolytes into polyelectrolyte dense (coacervate) and polyelectrolyte dilute (supernatant) phases. We demonstrate that patterns of charges can profoundly affect the charge-charge associations that drive this process. Furthermore, we establish the physical origin of this pattern-dependent interaction: there is a nuanced combination of structural changes in the dense coacervate phase and a 1D confinement of counterions due to patterns along polymers in the supernatant phase.

Concepts: Polymer, Polymer chemistry, Emergence, Systems theory, Monomer, Materials science, Polymerization, Real analysis


G-triplexes have recently been identified as a new kind of DNA structures. They perhaps possess specific biological and chemical functions similar as identified G-quardruplex, but can be formed by shorter G-rich sequences with only three G-tracts. However, till now, limited G-triplexes sequences have been reported, which might be due to the fact that their stability is one of the biggest concerns during their functional studies and application researches. Herein, we found a G-rich sequence (5'-TGGGTAGGGCGGG-3') which can form a stable G-triplex (Tm ~ 60 °C) at room temperature. The stable G-triplex can combine with thioflavin T and function as an efficient fluorescence light-up probe. Comparing with traditional G-qudruplex based probe, this triplex based probe was easy to be controlled and excited. Finally, the probe was successfully applied into constructing a label-free molecular beacon for miRNA detection. Taking advantage of these abilities of the G-triplex based fluorescent probe, the challenges faced during designing G-rich sequences based fluorescent biosensors can be efficiently solved. These findings provide important information for the future application of G-triplex.

Concepts: DNA, Fluorescence, Ultraviolet, Molecular biology, Biology, Series, Molecule, Real analysis