Discover the most talked about and latest scientific content & concepts.

Concept: Reaction rate constant


The evolution of the varietal thiol 3-mercaptohexanol acetate (3MHA) and other key aroma compounds has been monitored in New Zealand Sauvignon blanc wines stored for 1 year at three different temperatures (5, 10 and 18 °C). The main processes that occurred in the Sauvignon blanc wines during bottle ageing were hydrolysis of 3MHA and other acetate esters, hydrolysis of ethyl esters of fatty acids, and the formation of ethyl esters of branched acids. The kinetic parameters of ester hydrolysis, including reaction rate constants and activation energies, were determined, which allow prediction of future wine composition based upon storage temperature and time. It was found that 3MHA had the highest reaction rate constant, meaning that this compound is the most unstable, particularly at higher storage temperatures, and that it disappeared very fast during wine storage.

Concepts: Cabernet Sauvignon, Fatty acid, Chardonnay, Reaction rate constant, Wine, Sauvignon blanc, Fermentation, Ester


Formaldehyde (HCHO) is a major indoor pollutant and long-term exposure to HCHO may cause health problems such as nasal tumors and skin irritation. Photocatalytic oxidation is considered as the most promising strategy for the decomposition of HCHO. Herein, for the first time, a direct g-C3N4-TiO2 Z-scheme photocatalyst without an electron mediator was prepared by a facile calcination route utilizing affordable P25 and urea as the feedstocks. Photocatalytic activities of the as-prepared samples were evaluated by the photocatalytic oxidation decomposition of HCHO in air. It was shown that the photocatalytic activity of the prepared Z-scheme photocatalysts was highly dependent on the g-C3N4 content. At the optimal g-C3N4 content (sample U100 in this study), the apparent reaction rate constant was 7.36 × 10(-2) min(-1) for HCHO decomposition, which exceeded that of pure P25 (3.53 × 10(-2) min(-1)) by a factor of 2.1. The enhanced photocatalytic activity could be ascribed to the formation of a g-C3N4-TiO2 Z-scheme photocatalyst, which results in the efficient space separation of photo-induced charge carriers. Considering the ease of the preparation method, this work will provide new insights into the design of high-performance Z-scheme photocatalysts for indoor air purification.

Concepts: Rate equation, Irritation, Nitrogen, Photocatalytic water splitting, Reaction rate constant, Chemical kinetics, Reaction rate, Photocatalysis


Aromatic organoarsenicals p-arsanilic acid (pAsA) and roxarsone (ROX) are used as feed additives in developing countries that allow the use of arsenic-containing compounds in their poultry industry. These compounds are introduced to the environment through the application of contaminated poultry litter. Little is known about the surface chemistry of these organoarsenicals at the molecular level with reactive components in soils. We report herein the first in-situ and surface-sensitive rapid kinetic studies on the adsorption and desorption of pAsA to/from hematite nanoparticles at pH 7 using ATR-FTIR. Values for the apparent initial rates of adsorption and desorption were extracted from experimental data as a function of spectral components. Hydrogen phosphate was used as a desorbing agent due to its ubiquitous presence in litter, and its adsorption kinetics was investigated on surfaces with and without surface arsenic. Initial first order pseudo adsorption rate constant for pAsA was lower by a factor of 1.6 than that of iAs(V) suggesting an average behavior for the formation of quantitatively more weakly-bonded monodentate and/or hydrogen-bonded complexes for the former relative to strongly-bonded bidentate surface complexes for the latter under our experimental conditions. Initial first order pseudo adsorption rate constants for hydrogen phosphate decreases in this order: fresh hematite > pAsA/hematite ≈ phenylarsonic acid (PhAs)/hematite > iAs/hematite by factors 1.5 and 3 relative to fresh films, respectively. Initial desorption kinetics of aromatic organoarsenicals due to flowing hydrogen phosphate proceed with a non-unity overall order suggesting a complex mechanism, which is consistent with the existence of more than one type of surface complexes. The impact of our studies on the environmental fate and transport of aromatic organoarsenicals in geochemical environments and their overall surface chemistry with iron (oxyhyr)oxides is discussed.

Concepts: Reaction rate constant, Chemical kinetics, Kinetics, Surface chemistry, PH, Reaction rate, Acid, Adsorption


Two simple, selective and accurate methods were developed and validated for the determination of brimonidine tartrate (BT) in pure state and pharmaceutical formulations. Both methods are based on the coupling of the drug with 4-chloro-7-nitro-2,1,3-benzoxadiazole in borate buffer (pH 8.5) at 70 °C and measurement of the reaction product spectrophotometrically at 407 nm (method I) or spectrofluorimetrically at 528 nm upon excitation at 460 nm (method II). The calibration graphs were rectilinear over the concentration ranges of 1.0-16.0 and 0.1-4.0 µg/mL with lower detection limits of 0.21 and 0.03, and lower quantification limits of 0.65 and 0.09 µg/mL for methods I and II, respectively. Both methods were successfully applied to the analysis of commercial ophthalmic solution with mean recovery of 99.50 ± 1.00 and 100.13 ± 0.71%, respectively. Statistical analysis of the results obtained by the proposed methods revealed good agreement with those obtained using a comparison method. The proposed spectrofluorimetric method was extended to a stability study of BT under different ICH-outlined conditions such as alkaline, acidic, oxidative and photolytic degradation. Furthermore, the kinetics of oxidative degradation of the drug was investigated and the apparent first-order reaction rate constants, half-life times and Arrhenius equation were estimated. The proposed methods are practical and valuable for routine applications in quality control laboratories for the analysis of BT. Copyright © 2014 John Wiley & Sons, Ltd.

Concepts: Measurement, Pharmacology, Scientific method, Chemical reaction, PH, Statistics, Reaction rate constant, Chemical kinetics


Ozonolysis is a major tropospheric removal mechanism for unsaturated hydrocarbons and proceeds via “Criegee intermediates”–carbonyl oxides–that play a key role in tropospheric oxidation models. However, until recently no gas-phase Criegee intermediate had been observed, and indirect determinations of their reaction kinetics gave derived rate coefficients spanning orders of magnitude. Here, we report direct photoionization mass spectrometric detection of formaldehyde oxide (CH(2)OO) as a product of the reaction of CH(2)I with O(2). This reaction enabled direct laboratory determinations of CH(2)OO kinetics. Upper limits were extracted for reaction rate coefficients with NO and H(2)O. The CH(2)OO reactions with SO(2) and NO(2) proved unexpectedly rapid and imply a substantially greater role of carbonyl oxides in models of tropospheric sulfate and nitrate chemistry than previously assumed.

Concepts: Aldehyde, Collision theory, Chemical reaction, Ozonolysis, Oxygen, Reaction rate constant, Functional group, Reaction rate


The kinetics of the hydroxyl radical (OH) + carbon monoxide (CO) reaction, which is fundamental to both atmospheric and combustion chemistry, are complex because of the formation of the hydrocarboxyl radical (HOCO) intermediate. Despite extensive studies of this reaction, HOCO has not been observed under thermal reaction conditions. Exploiting the sensitive, broadband, and high-resolution capabilities of time-resolved cavity-enhanced direct frequency comb spectroscopy, we observed deuteroxyl radical (OD) + CO reaction kinetics and detected stabilized trans-DOCO, the deuterated analog of trans-HOCO. By simultaneously measuring the time-dependent concentrations of the trans-DOCO and OD species, we observed unambiguous low-pressure termolecular dependence of the reaction rate coefficients for N2 and CO bath gases. These results confirm the HOCO formation mechanism and quantify its yield.

Concepts: Oxygen, Collision theory, Hydroxyl radical, Carbon dioxide, Chemical reaction, Chemical kinetics, Reaction rate constant, Reaction rate


BACKGROUND: This study investigated the oxidation of selected progestagenic steroid hormones by potassium permanganate at pH 6.0 and 8.0 in ultrapure water and wastewater effluents, using bench-scale assays. Second order rate constants for the reaction of potassium permanganate with progestagens (levonorgestrel, medroxyprogesterone, norethindrone and progesterone) was determined as a function of pH, presence of natural organic matter and temperature. This work also illustrates the advantages of using a novel analytical method, the laser diode thermal desorption (LDTD-APCI) interface coupled to tandem mass spectrometry apparatus, allowing for the quick determination of oxidation rate constants and increasing sample throughput. RESULTS: The second-order rate constants for progestagens with permanganate determined in bench-scale experiments ranged from 23 to 368 M-1 sec-1 in both wastewater and ultrapure waters with pH values of 6.0 and 8.0. Two pairs of progestagens exhibited similar reaction rate constants, i.e. progesterone and medroxyprogesterone (23 to 80 M-1 sec-1 in ultrapure water and 26 to 149 M-1 sec-1 in wastewaters, at pH 6.0 and 8.0) and levonorgestrel and norethindrone (179 to 224 M-1 sec-1 in ultrapure water and 180 to 368 M-1 sec-1 in wastewaters, at pH 6.0 and 8.0). The presence of dissolved natural organic matter and the pH conditions improved the oxidation rate constants for progestagens with potassium permanganate only at alkaline pH. Reaction rates measured in Milli-Q water could therefore be used to provide conservative estimates for the oxidation rates of the four selected progestagens in wastewaters when exposed to potassium permanganate. The progestagen removal efficiencies was lower for progesterone and medroxyprogesterone (48 to 87 %) than for levonorgestrel and norethindrone (78 to 97 %) in Milli-Q and wastewaters at pH 6.0-8.2 using potassium permanganate dosages of 1 to 5 mg L-1 after contact times of 10 to 60 min. CONCLUSION: This work presents the first results on the permanganate-promoted oxidation of progestagens, as a function of pH, temperature as well as NOM. Progestagen concentrations used to determine rate constants were analyzed using an ultrafast laser diode thermal desorption interface coupled to tandem mass spectrometry for the analysis of water sample for progestagens.

Concepts: Estrogen, Water, Progestagen, PH, Reaction rate, Reaction rate constant, Rate equation, Progestagens


Alterations in glutathione (GSH) homeostasis are associated with a variety of diseases and cellular functions, and therefore, real-time live-cell imaging and quantification of GSH dynamics are important for understanding pathophysiological processes. However, existing fluorescent probes are unsuitable for these purposes due to their irreversible fluorogenic mechanisms or slow reaction rates. In this work, we have successfully overcome these problems by establishing a design strategy inspired by Mayr’s work on nucleophilic reaction kinetics. The synthesized probes exhibit concentration-dependent, reversible and rapid absorption/fluorescence changes (t1/2 = 620 ms at [GSH] = 1 mM), as well as appropriate Kd values (1-10 mM: within the range of intracellular GSH concentrations). We also developed FRET-based ratiometric probes, and demonstrated that they are useful for quantifying GSH concentration in various cell types and also for real-time live-cell imaging of GSH dynamics with temporal resolution of seconds.

Concepts: Cellular manufacturing, Reaction rate constant, Design, Enzyme kinetics, Collision theory, Force, Chemical kinetics, Reaction rate


The energy required to fuse synaptic vesicles with the plasma membrane (‘activation energy’) is considered a major determinant in synaptic efficacy. From reaction rate theory we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that ComplexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive versus multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca(2+)-dependent release.

Concepts: Chemical kinetics, Hypothesis, Vesicle, Synaptic vesicle, Chemistry, Reaction rate constant, Scientific method, Chemical reaction


Although carbonyl oxides, “Criegee intermediates,” have long been implicated in tropospheric oxidation, there have been few direct measurements of their kinetics, and only for the simplest compound in the class, CH2OO. Here, we report production and reaction kinetics of the next larger Criegee intermediate, CH3CHOO. Moreover, we independently probed the two distinct CH3CHOO conformers, syn- and anti-, both of which react readily with SO2 and with NO2. We demonstrate that anti-CH3CHOO is substantially more reactive toward water and SO2 than is syn-CH3CHOO. Reaction with water may dominate tropospheric removal of Criegee intermediates and determine their atmospheric concentration. An upper limit is obtained for the reaction of syn-CH3CHOO with water, and the rate constant for reaction of anti-CH3CHOO with water is measured as 1.0 × 10(-14) ± 0.4 × 10(-14) centimeter(3) second(-1).

Concepts: Measurement, Carbon dioxide, Reaction rate constant, Oxygen, Activation energy, Chemical kinetics, Oxide, Reaction rate