Discover the most talked about and latest scientific content & concepts.

Concept: Rauvolfia


Indian snakeroot (Rauvolfia serpentina) is a valuable forest product, root extracts of which are used as an antihypertensive drug. Increasing demand led to overharvesting in the wild. Control of international trade is hampered by the inability to identify root samples to the species level. We therefore evaluated the potential of molecular identification by searching for species-specific DNA polymorphisms. We found two species-specific indels in the rps16 intron region for R. serpentina. Our DNA barcoding method was tested for its specificity, reproducibility, sensitivity and stability. We included samples of various tissues and ages, which had been treated differently for preservation. DNA extractions were tested in a range of amplification settings and dilutions. Species-specific rps16 intron sequences were obtained from 79 herbarium accessions and one confiscated root, encompassing 39 different species. Our results demonstrate that molecular analysis provides new perspectives for forensic identification of Indian snakeroot.

Concepts: DNA, Rauwolfia serpentina, Rauvolfia, Sensitivity and specificity, Identification, DNA barcoding, Species


The family Apocynaceae is one of the largest and important families in angiosperm. Several members of this family have medicinal properties and have been in the treatment of various ailments. Most of them are consumed as food by tribal people whereas a few plants are used as source of poison. Members of family Apocynaceae are rich in alkaloids, terpenoids, steroids, flavonoids, glycosides, simple phenols, lactones, and hydrocarbons. Other compounds such as sterols, lignans, sugars, lignans, and lactones have been isolated and systematically studied. Few studies have reported antioxidant, anti-inflammatory, antimicrobial, and cytotoxic activities of crude extracts as well as single compound(s) isolated from various members of the family Apocynaceae. Holarrhena antidysenterica, Rauvolfia serpentina, Carissa carandas, and Tabernaemontana divaricata are the extensively studied plants in this family. The present review provides a detailed outlook on ethnopharmacology, phytochemistry, and biological activities of selected members of this family. Moreover, it also covers the biotechnological advances used for large-scale production of bioactive compounds of therapeutic interest along with plant tissue culture-based approaches for conservation of this medicinally valuable family.

Concepts: Karonda, Plant, Steroid, Rauwolfia serpentina, Rauvolfia, Biology, Medicine, Apocynaceae


Arbutin is a hydroquinone glucoside compound existing in various plants. It is widely used in pharmaceutical and cosmetic industries owing to its well-known skin-lightening property as well as anti-oxidant, anti-microbial, and anti-inflammatory activities. Currently, arbutin is usually produced by plant extraction or enzymatic processes, which suffer from low product yield and expensive processing cost. In this work, we established an artificial pathway in Escherichia coli for high-level production of arbutin from simple carbon sources. First, a 4-hydroxybenzoate 1-hydroxylase from Candida parapsilosis CBS604 and a glucosyltransferase from Rauvolfia serpentina were characterized by in vitro enzyme assays. Introduction of these two genes into E. coli led to the production of 54.71mg/L of arbutin from glucose. Further redirection of carbon flux into arbutin biosynthesis pathway by enhancing shikimate pathway genes enabled production of 3.29g/L arbutin, which is a 60-fold increase compared with the initial strain. Final optimization of glucose concentration added in the culture medium was able to further improve the titer of arbutin to 4.19g/L in shake flasks experiments, which is around 77-fold higher than that of initial strain. This work established de novo biosynthesis of arbutin from simple carbon sources and provided a generalizable strategy for the biosynthesis of shikimate pathway derived chemicals. The high titer achieved in our engineered strain also indicates the potential for industrial scale bio-manufacturing of arbutin.

Concepts: Yeast, Rauwolfia serpentina, Rauvolfia, Enzyme, Gut flora, Protein, Bacteria, Escherichia coli


The monoterpenoid indole alkaloids, reserpine and rescinnamine contain 3, 4, 5-trimethoxybenzoate or 3, 4, 5-trimethoxycinnamate, respectively, within their structures and they accumulate in different plant organs and particularly within roots of Rauwolfia serpentina. This plant also accumulates acylated sugars substituted with 3, 4, 5-trimethoxybenzoate and 3, 4, 5-trimethoxycinnamate. In the present study, transcriptome and metabolome analyses of R. serpentina roots allowed the identification of 7 candidate O-methytransferase (OMT) genes that might be associated with the formation of 3, 4, 5-trimethoxybenzoate and 3, 4, 5-trimethoxycinnamate and led to the molecular cloning of 4 genes for functional expression and analysis. Two candidate genes were expressed in E. coli and were shown to use different phenolics as methyl acceptors. RsOMT1, a member of the caffeoyl CoA-OMT-like family of genes, converted 3, 5 dimethoxy-4-hydroxycinnamic, caffeic and 3, 4, 5 trihydroxybenzoic acids to trimethoxycinnamic-, ferulic/isoferulic- and 3-methoxy, 4, 5 dihydroxybenzoic or 4-methoxy, 3, 5 dihydroxybenzoic acids, respectively, when supplied with these substrates. RsOMT3, a member of the caffeic acid-OMT-like family of genes, only converted caffeic acid to ferulic acid. Both enzymes showed considerable promiscuity with respect to various flavonoid substrates that they accepted. The para-O-methylation activity of RsOMT1 is quite rare and unusual for plant OMTs. The involvement of RsOMT1 and RsOMT3 in the assembly of trimethoxybenzoic and trimethoxycinnamic acids is discussed.

Concepts: Rauvolfia, Reserpine, Gene expression, Matrix-assisted laser desorption/ionization, Molecular biology, Caffeic acid, Ferulic acid, Rauwolfia serpentina


Plant-derived molecules (PDMs) are known to be a rich source of diverse scaffolds that could serve as a basis for rational drug design. Structured compilation of phytochemicals from traditional medicinal plants can facilitate prospection for novel PDMs and their analogs as therapeutic agents. Rauvolfia serpentina is an important medicinal plant, endemic to Himalayan mountain ranges of Indian subcontinent, reported to be of immense therapeutic value against various diseases.

Concepts: Medicinal plants, Infectious disease, Medicine, Rauwolfia serpentina, Rauvolfia, Computational chemistry, Himalayas, Pharmacology


Based on findings described herein, we contend that the reduction of vomilenine en route to antiarrhythmic ajmaline in planta might proceed via an alternative, novel sequence of biosynthetic steps. In the genus Rauvolfia, monoterpenoid indole alkaloids (MIAs) are formed via complex biosynthetic sequences. Despite the wealth of information about the biochemistry and molecular genetics underlying these processes, many reaction steps involving oxygenases and oxidoreductases are still elusive. Here, we describe molecular cloning and characterization of three cinnamyl alcohol dehydrogenase (CAD)-like reductases from Rauvolfia serpentina cell culture and R. tetraphylla roots. Functional analysis of the recombinant proteins, with a set of MIAs as potential substrates, led to identification of one of the enzymes as a CAD, putatively involved in lignin formation. The two remaining reductases comprise isoenzymes derived from orthologous genes of the investigated alternative Rauvolfia species. Their catalytic activity consists of specific conversion of vomilenine to 19,20-dihydrovomilenine, thus proving their exclusive involvement in MIA biosynthesis. The obtained data suggest the existence of a previously unknown bypass in the biosynthetic route to ajmaline further expanding structural diversity within the MIA family of specialized plant metabolites.

Concepts: Gene, Genetics, Rauwolfia serpentina, Rauvolfia, DNA, Molecular biology, Metabolism, Enzyme


A new UHPLC-UV method has been developed for the simultaneous analysis of seven alkaloids [ajmaline (1), yohimbine (2), corynanthine (3), ajmalicine (4), serpentine (5), serpentinine (6), and reserpine (7)] from the root samples of Rauwolfia serpentina (L.) Benth. ex Kurz. The chromatographic separation was achieved using a reversed phase C18 column with a mobile phase of water and acetonitrile, both containing 0.05 % formic acid. The seven compounds were completely separated within 8 min at a flow rate of 0.2 mL/min with a 2-μL injection volume. The method is validated for linearity, accuracy, repeatability, limits of detection (LOD), and limits of quantification (LOQ). Seven plant samples and 21 dietary supplements claiming to contain Rauwolfia roots were analyzed and content of total alkaloids (1-7) varied, namely, 1.57-12.1 mg/g dry plant material and 0.0-4.5 mg/day, respectively. The results indicated that commercial products are of variable quality. The developed analytical method is simple, economic, fast, and suitable for quality control analysis of Rauwolfia samples and commercial products. The UHPLC-QToF-mass spectrometry with electrospray ionization (ESI) interface method is described for the confirmation and characterization of alkaloids from plant samples. This method involved the detection of [M + H](+) or M(+) ions in the positive mode.

Concepts: Root, Ajmalicine, Yohimbine, Mass spectrometry, Rauvolfia, Chromatography, Analytical chemistry, Rauwolfia serpentina


Abstract Insight into the structure and inhibition mechanism of O-β-d-glucosidases by deoxa-pyranosylamine type inhibitors is provided by X-ray analysis of complexes between raucaffricine and strictosidine glucosidases and N-(cyclohexylmethyl)-, N-(cyclohexyl)- and N-(bromobenzyl)-β-d-gluco-1,5-deoxa-pyranosylamine. All inhibitors anchored exclusively in the catalytic active site by competition with appropriate enzyme substrates. Thus facilitated prospective elucidation of the binding networks with residues located at <3.9 Å distance will enable the development of potent inhibitors suitable for the production of valuable alkaloid glucosides, raucaffricine and strictosidine, by means of synthesis in Rauvolfia serpentina cell suspension cultures.

Concepts: Musical form, Enzyme substrate, Rauwolfia serpentina, Rauvolfia, Structure, Catalysis, Enzyme, Enzyme inhibitor


Genetic, morphological and chemical variations of ten natural populations of Rauvolfia serpentina Benth. Ex. Kurtz. from Southern Western Ghats of India were assessed using RAPD markers reserpine content and morphological traits. An estimate of genetic diversity and differentiation between genotypes of breeding germplasm is of key importance for its improvement. Populations were collected from different geographical regions. Data obtained through three different methods were compared and the correlation among them was estimated. Statistical analysis showed significant differences for all horticultural characteristics among the accessions suggesting that selection for relevant characteristics could be possible. Variation in the content of Reserpine range from 0.192g/100g (population from Tusharagiri) to 1.312g/100g (Population from Aryankavu). A high diversity within population and high genetic differentiation among them them based on RAPDs were revealed caused both by habitat fragmentation the low size of most populations and the low level of gene flow among them. The UPGMA dendrogram and PCA analysis based on reserpine content yielded higher separation among populations indicated specific adaptation of populations into distinct clusters each of them including populations closed to their geographical origin. Genetic, chemical and morphological data were correlated based on Mantel test. Given the high differentiation among populations conservation strategies should take into account genetic diversity and chemical variation levels in relation to bioclimatic and geographic location of populations. Our results also indicate that RAPD approach along with horticultural analysis seemed to be best suited for assessing with high accuracy the genetic relationships among distinct R.serpentina accessions.

Concepts: Population genetics, Biology, Sociology, Rauvolfia, Genetics, Western Ghats, Statistics, Rauwolfia serpentina


Aldose Reductase (AR) is implicated in the development of secondary complications of diabetes, providing an interesting target for therapeutic intervention. Extracts of Rauvolfia serpentina, a medicinal plant endemic to the Himalayan mountain range, have been known to be effective in alleviating diabetes and its complications. In this study, we aim to prospect for novel plant-derived inhibitors from R. serpentina and to understand structural basis of their interactions. An extensive library of R. serpentina molecules was compiled and computationally screened for inhibitory action against AR. The stability of complexes, with docked leads, was verified using molecular dynamics simulations. Two structurally distinct plant-derived leads were identified as inhibitors: indobine and indobinine. Further, using these two leads as templates, 16 more leads were identified through ligand-based screening of their structural analogs, from a small molecules database. Thus, we obtained plant-derived indole alkaloids, and their structural analogs, as potential AR inhibitors from a manually curated dataset of R. serpentina molecules. Indole alkaloids reported herein, as a novel structural class unreported hitherto, may provide better insights for designing potential AR inhibitors with improved efficacy and fewer side effects.

Concepts: Structure, Alkaloid, Computational chemistry, Reserpine, Effectiveness, Himalayas, Rauwolfia serpentina, Rauvolfia