SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Raman spectroscopy

172

Raman microspectroscopy provides the means to obtain local orientations on polycrystalline materials at the submicrometer level. The present work demonstrates how orientation-distribution maps composed of Raman intensity distributions can be acquired on large areas of several hundreds of square micrometers. A polycrystalline CuInSe2 thin film was used as a model system. The orientation distributions are evidenced by corresponding measurements using electron backscatter diffraction (EBSD) on the same identical specimen positions. The quantitative, local orientation information obtained by means of EBSD was used to calculate the theoretical Raman intensities for specific grain orientations, which agree well with the experimental values. The presented approach establishes new horizons for Raman microspectroscopy as a tool for quantitative, microstructural analysis at submicrometer resolution.

Concepts: Scientific method, Electron, Spectroscopy, Diffraction, Photon, Raman spectroscopy, Electron diffraction, Electron backscatter diffraction

169

Large arrays of multifunctional rolled-up semiconductors can be mass produced with precisely controlled size and composition, making them of great technological interest for micro- and nano-scale device fabrication. The microtube behavior at different temperatures is a key factor towards further engineering their functionality, as well as for characterizing strain, defects, and temperature-dependent properties of the structures. For this purpose, we probe optical phonons of GaAs/InGaAs rolled-up microtubes using Raman spectroscopy on defect-rich (faulty) and defect-free microtubes. The microtubes are fabricated by selectively etching an AlAs sacrificial layer in order to release the strained InGaAs/GaAs bilayer, all grown by molecular beam epitaxy. Pristine microtubes show homogeneity of the GaAs and InGaAs peak positions and intensities along the tube, which indicates a defect-free rolling up process, while for a cone-like microtube, a downward shift of the GaAs LO phonon peak along the cone is observed. Formation of other type of defects, including partially unfolded microtubes, can also be related to a high Raman intensity of the TO phonon in GaAs. We argue that the appearance of the TO phonon mode is a consequence of further relaxation of the selection rules due to the defects on the tubes, which makes this phonon useful for failure detection/prediction in such rolled up systems. In order to systematically characterize the temperature stability of the rolled up microtubes, Raman spectra were acquired as a function of sample temperature up to 300[degree sign]C. The reversibility of the changes in the Raman spectra of the tubes within this temperature range is demonstrated.

Concepts: Spectroscopy, Thermodynamics, Gallium arsenide, Raman spectroscopy, Molecular beam epitaxy, Raman scattering, Phonon, The Tubes

140

It is desirable to extend the surface-enhanced Raman scattering (SERS) from the conventionally used visible range into the infrared region, because the fluorescence background is lower in the long-wavelength regime. To do this, it is important to have a SERS substrate suitable for infrared operation. In this work, we report the near infrared SERS operation based on the substrates employing star-shaped gold/silver nanoparticles and hyperbolic metamaterial (HMM) structure. We first fabricate the SERS substrate in which nanoparticles are separated from a silver film by a thin dielectric layer. Performance of the SERS substrate is investigated with a 1064-nm excitation source. Compared with similar silver film-based substrates employing respectively gold and silver spherical nanoparticles, it is found that, Raman intensity scattered by the substrate with star-shaped nanoparticles is 7.4 times stronger than that with gold nanoparticles, and 3.4 times stronger than that with silver nanoparticles. Following this, we fabricate the SERS substrate where the star-shaped nanoparticles are deposited over a HMM structure. The HMM structure comprises three pairs of germanium-silver multilayers. Further experimental result shows that, with the star-shaped nanoparticles, the HMM-based substrate yields 30% higher Raman intensity for near infrared SERS operation than the silver film-based substrate does.

Concepts: Spectroscopy, Scattering, Gold, Raman spectroscopy, Raman scattering, Infrared spectroscopy, Infrared, Visible spectrum

48

To progress from the laboratory to commercial applications, it will be necessary to develop industrially scalable methods to produce large quantities of defect-free graphene. Here we show that high-shear mixing of graphite in suitable stabilizing liquids results in large-scale exfoliation to give dispersions of graphene nanosheets. X-ray photoelectron spectroscopy and Raman spectroscopy show the exfoliated flakes to be unoxidized and free of basal-plane defects. We have developed a simple model that shows exfoliation to occur once the local shear rate exceeds 10(4) s(-1). By fully characterizing the scaling behaviour of the graphene production rate, we show that exfoliation can be achieved in liquid volumes from hundreds of millilitres up to hundreds of litres and beyond. The graphene produced by this method performs well in applications from composites to conductive coatings. This method can be applied to exfoliate BN, MoS2 and a range of other layered crystals.

Concepts: Spectroscopy, X-ray, Volume, Water, Liquid, Raman spectroscopy, Graphite, X-ray photoelectron spectroscopy

39

Small plastic detritus, termed ‘microplastics’, are a widespread and ubiquitous contaminant of marine ecosystems across the globe. Ingestion of microplastics by marine biota, including mussels, worms, fish and seabirds, has been widely reported, but despite their vital ecological role in marine food-webs, the impact of microplastics on zooplankton remains under-researched. Here, we show that microplastics are ingested by, and may impact upon, zooplankton. We used bio-imaging techniques to document ingestion, egestion and adherence of microplastics in a range of zooplankton common to the northeast Atlantic, and employed feeding rate studies to determine the impact of plastic detritus on algal ingestion rates in copepods. Using fluorescence and coherent anti-Stokes Raman scattering (CARS) microscopy we identified that thirteen zooplankton taxa had the capacity to ingest 1.7 - 30.6 µm polystyrene beads, with uptake varying by taxa, life-stage and bead-size. Post-ingestion, copepods egested faecal pellets laden with microplastics. We further observed microplastics adhered to the external carapace and appendages of exposed zooplankton. Exposure of the copepod Centropages typicus to natural assemblages of algae with and without microplastics showed that 7.3 µm microplastics (>4000 ml-1) significantly decreased algal feeding. Our findings imply that marine microplastic debris can negatively impact upon zooplankton function and health.

Concepts: Ecology, Eating, Ingestion, Coprophagia, Crustacean, Raman spectroscopy, Plankton, Copepod

36

In this work, we propose a novel approach for wafer-scale integration of 2D materials on CMOS photonic chip utilising methods of synthetic chemistry and microfluidics technology. We have successfully demonstrated that this approach can be used for integration of any fluid-dispersed 2D nano-objects on silicon-on-insulator photonics platform. We demonstrate for the first time that the design of an optofluidic waveguide system can be optimised to enable simultaneous in-situ Raman spectroscopy monitoring of 2D dispersed flakes during the device operation. Moreover, for the first time, we have successfully demonstrated the possibility of label-free 2D flake detection via selective enhancement of the Stokes Raman signal at specific wavelengths. We discovered an ultra-high signal sensitivity to the xyz alignment of 2D flakes within the optofluidic waveguide. This in turn enables precise in-situ alignment detection, for the first practicable realisation of 3D photonic microstructure shaping based on 2D-fluid composites and CMOS photonics platform, while also representing a useful technological tool for the control of liquid phase deposition of 2D materials.

Concepts: Spectroscopy, Laser, Integrated circuit, Surface tension, Raman spectroscopy, Photonics, Silicon photonics, Photonic computing

28

Henmilite is a triclinic mineral with the crystal structure consisting of isolated B(OH)(4) tetrahedra, planar Cu(OH)(4) groups and Ca(OH)(3) polyhedra. The structure can also be viewed as having dimers of Ca polyhedra connected to each other through 2B(OH) tetrahedra to form chains parallel to the C axis. The structure of the mineral has been assessed by the combination of Raman and infrared spectra. Raman bands at 902, 922, 951, and 984cm(-1) and infrared bands at 912, 955 and 998cm(-1) are assigned to stretching vibrations of tetragonal boron. The Raman band at 758cm(-1) is assigned to the symmetric stretching mode of tetrahedral boron. The series of bands in the 400-600cm(-1) region are due to the out-of-plane bending modes of tetrahedral boron. Two very sharp Raman bands are observed at 3559 and 3609cm(-1). Two infrared bands are found at 3558 and 3607cm(-1). These bands are assigned to the OH stretching vibrations of the OH units in henmilite. A series of Raman bands are observed at 3195, 3269, 3328, 3396, 3424 and 3501cm(-1) are assigned to water stretching modes. Infrared spectroscopy also identified water and OH units in the henmilite structure. It is proposed that water is involved in the structure of henmilite. Hydrogen bond distances based upon the OH stretching vibrations using a Libowitzky equation were calculated. The number and variation of water hydrogen bond distances are important for the stability off the mineral.

Concepts: Spectroscopy, Crystal, Hydrogen, Mineral, Raman spectroscopy, Infrared spectroscopy, Boron, Borate

28

The optical characterization of bundled and individual triple-walled carbon nanotubes was studied for the first time in detail by using resonant Raman spectroscopy. In our approach, the outer tube of a triple-walled carbon nanotube system protects the two inner tubes (or equivalently the inner double-walled carbon nanotube) from external environment interactions making them a partially isolated system. Following the spectral changes and line-widths of the radial breathing modes and G-band by performing laser energy dependent Raman spectroscopy, it is possible to extract important information as regards the electronic and vibrational properties, tube diameters, wall-to-wall distances, radial breathing mode and G-band resonance evolutions and high-curvature inter-tube interactions in isolated double- and triple-walled carbon nanotube systems.

Concepts: Spectroscopy, Laser, Carbon, Raman spectroscopy, Carbon nanotube, Allotropes of carbon, Graphite, Optical properties of carbon nanotubes

28

Even weak van der Waals (vdW) adhesion between two-dimensional solids may perturb their various materials properties owing to their low dimensionality. Although the electronic structure of graphene has been predicted to be modified by the vdW interaction with other materials, its optical characterization has not been successful. In this report, we demonstrate that Raman spectroscopy can be utilized to detect a few % decrease in the Fermi velocity (vF) of graphene caused by the vdW interaction with underlying hexagonal boron nitride (hBN). Our study also establishes Raman spectroscopic analysis which enables separation of the effects by the vdW interaction from those by mechanical strain or extra charge carriers. The analysis reveals that spectral features of graphene on hBN are mainly affected by change in vF and mechanical strain, but not by charge doping unlike graphene supported on SiO2 substrates. Graphene on hBN was also found to be less susceptible to thermally induced hole doping.

Concepts: Spectroscopy, Condensed matter physics, Raman spectroscopy, Infrared spectroscopy, Coherent anti-Stokes Raman spectroscopy, Raman optical activity, Chemical imaging, Boron nitride

28

Graphene is exploited to serve as a seamless and inert veil to fabricate a surface-enhanced Raman spectroscopy (SERS) substrate with a passivated surface. This novel approach inherits the concept of metal-molecule isolation (for more well-defined surface interactions) and results in a few superiorities. We find the SERS performance of a graphene-veiled substrate is highly morphology-dependent, and the dynamic process of thermal annealing is investigated in detail by in-situ Raman spectroscopy.

Concepts: Spectroscopy, Sun, Raman spectroscopy, Silver, Infrared spectroscopy, Coherent anti-Stokes Raman spectroscopy, Raman optical activity, Chemical imaging