Discover the most talked about and latest scientific content & concepts.

Concept: Radioactive decay


Cancer risk is an important concern for galactic cosmic ray (GCR) exposures, which consist of a wide-energy range of protons, heavy ions and secondary radiation produced in shielding and tissues. Relative biological effectiveness (RBE) factors for surrogate cancer endpoints in cell culture models and tumor induction in mice vary considerable, including significant variations for different tissues and mouse strains. Many studies suggest non-targeted effects (NTE) occur for low doses of high linear energy transfer (LET) radiation, leading to deviation from the linear dose response model used in radiation protection. Using the mouse Harderian gland tumor experiment, the only extensive data-set for dose response modelling with a variety of particle types (>4), for the first-time a particle track structure model of tumor prevalence is used to investigate the effects of NTEs in predictions of chronic GCR exposure risk. The NTE model led to a predicted risk 2-fold higher compared to a targeted effects model. The scarcity of data with animal models for tissues that dominate human radiation cancer risk, including lung, colon, breast, liver, and stomach, suggest that studies of NTEs in other tissues are urgently needed prior to long-term space missions outside the protection of the Earth’s geomagnetic sphere.

Concepts: Electron, Cancer, Ionizing radiation, Radioactive decay, Neutron, Neutron radiation, Mouse, Radiation


Politicians world-wide frequently promise a better life for their citizens. We find that the probability that a country will increase its per capita GDP (gdp) rank within a decade follows an exponential distribution with decay constant λ = 0.12. We use the Corruption Perceptions Index (CPI) and the Global Competitiveness Index (GCI) and find that the distribution of change in CPI (GCI) rank follows exponential functions with approximately the same exponent as λ, suggesting that the dynamics of gdp, CPI, and GCI may share the same origin. Using the GCI, we develop a new measure, which we call relative competitiveness, to evaluate an economy’s competitiveness relative to its gdp. For all European and EU countries during the 2008-2011 economic downturn we find that the drop in gdp in more competitve countries relative to gdp was substantially smaller than in relatively less competitive countries, which is valuable information for policymakers.

Concepts: European Union, Radioactive decay, Probability theory, Derivative, Exponential growth, Exponential function, Competitiveness, Global Competitiveness Report


To evaluate the environmental contamination and radiation exposure dose rates due to artificial radionuclides in Kawauchi Village, Fukushima Prefecture, the restricted area within a 30-km radius from the Fukushima Dai-ichi Nuclear Power Plant (FNPP), the concentrations of artificial radionuclides in soil samples, tree needles, and mushrooms were analyzed by gamma spectrometry. Nine months have passed since samples were collected on December 19 and 20, 2011, 9 months after the FNPP accident, and the prevalent dose-forming artificial radionuclides from all samples were (134)Cs and (137)Cs. The estimated external effective doses from soil samples were 0.42-7.2 µSv/h (3.7-63.0 mSv/y) within the 20-km radius from FNPP and 0.0011-0.38 µSv/h (0.010-3.3 mSv/y) within the 20-30 km radius from FNPP. The present study revealed that current levels are sufficiently decreasing in Kawauchi Village, especially in areas within the 20- to 30-km radius from FNPP. Thus, residents may return their homes with long-term follow-up of the environmental monitoring and countermeasures such as decontamination and restrictions of the intake of foods for reducing unnecessary exposure. The case of Kawauchi Village will be the first model for the return to residents' homes after the FNPP accident.

Concepts: Ionizing radiation, Nuclear physics, Chernobyl disaster, Radioactive decay, Nuclear power, Radioactive contamination, Prefectures of Japan, Fukushima Prefecture


BACKGROUND: The characterization of fast-decaying radiotracers that are labeled with carbon-11 (t1/2 = 20.38 min), including critical measurement of specific radioactivity (activity per mole at a specific time) before release for use in positron-emission tomography (PET), has relied heavily on chromatographic plus radiometric measurements, each of which may be vulnerable to significant errors. Thus, we aimed to develop a mass-specific detection method using sensitive liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) for identifying 11C-labeled tracers and for verifying their specific radioactivities. METHODS: The LC-MS/MS was tuned and set up with methods to generate and measure the product ions specific for carbon-11 species and M + 1 carrier (predominantly the carbon-13 isotopologue) in four 11C-labeled tracers. These radiotracers were synthesized and then analyzed before extensive carbon-11 decay. The peak areas of carbon-11 species and M + 1 carrier from the LC-MS/MS measurement and the calculated abundances of carbon-12 carrier and M + 1 radioactive species gave the mole fraction of carbon-11 species in each sample. This value upon multiplication with the theoretical specific radioactivity of carbon-11 gave the specific radioactivity of the radiotracer. RESULTS: LC-MS/MS of each 11C-labeled tracer generated the product ion peaks for carbon-11 species and M + 1 carrier at the expected LC retention time. The intensity of the radioactive peak diminished as time elapsed and was undetectable after six half-lives of carbon-11. Measurements of radiotracer-specific radioactivity determined solely by LC-MS/MS at timed intervals gave a half-life for carbon-11 (20.43 min) in excellent agreement with the value obtained radiometrically. Additionally, the LC-MS/MS measurement gave specific radioactivity values (83 to 505 GBq/mumol) in good agreement with those from conventional radiometric methods. CONCLUSIONS: C-Labeled tracers were characterized at a fundamental level involving isolation and mass detection of extremely low-abundance carbon-11 species along with the M + 1 carrier counterpart. This LC-MS/MS method for characterizing fast-decaying radiotracers is valuable in both the development and production of PET radiopharmaceuticals.

Concepts: Time, Measurement, Positron emission tomography, Radioactive decay, Isotope, Half-life, Radiometric dating, Carbon-12


Radioactive isotopes originating from the damaged Fukushima nuclear reactor in Japan following the earthquake and tsunami in March 2011 were found in resident marine animals and in migratory Pacific bluefin tuna (PBFT). Publication of this information resulted in a worldwide response that caused public anxiety and concern, although PBFT captured off California in August 2011 contained activity concentrations below those from naturally occurring radionuclides. To link the radioactivity to possible health impairments, we calculated doses, attributable to the Fukushima-derived and the naturally occurring radionuclides, to both the marine biota and human fish consumers. We showed that doses in all cases were dominated by the naturally occurring alpha-emitter (210)Po and that Fukushima-derived doses were three to four orders of magnitude below (210)Po-derived doses. Doses to marine biota were about two orders of magnitude below the lowest benchmark protection level proposed for ecosystems (10 µGy⋅h(-1)). The additional dose from Fukushima radionuclides to humans consuming tainted PBFT in the United States was calculated to be 0.9 and 4.7 µSv for average consumers and subsistence fishermen, respectively. Such doses are comparable to, or less than, the dose all humans routinely obtain from naturally occurring radionuclides in many food items, medical treatments, air travel, or other background sources. Although uncertainties remain regarding the assessment of cancer risk at low doses of ionizing radiation to humans, the dose received from PBFT consumption by subsistence fishermen can be estimated to result in two additional fatal cancer cases per 10,000,000 similarly exposed people.

Concepts: Ionizing radiation, Radioactive decay, Gamma ray, Radiation poisoning, Radioactive contamination, Radioactivity, Radionuclide, Tuna


We report measurements of background gamma radiation levels on six islands in the northern Marshall Islands (Enewetak, Medren, and Runit onEnewetak Atoll; Bikini and Nam on Bikini Atoll; and Rongelap on Rongelap Atoll). Measurable excess radiation could be expected from the decay of (137)Cs produced by the US nuclear testing program there from 1946 to 1958. These recordings are of relevance to safety of human habitation and resettlement. We find low levels of gamma radiation for the settled island of Enewetak [mean = 7.6 millirem/year (mrem/y) = 0.076 millisievert/year (mSv/y)], larger levels of gamma radiation for the island of Rongelap (mean = 19.8 mrem/y = 0.198 mSv/y), and relatively high gamma radiation on the island of Bikini (mean = 184 mrem/y = 1.84 mSv/y). Distributions of gamma radiation levels are provided, and hot spots are discussed. We provide interpolated maps for four islands (Enewetak, Medren, Bikini, and Rongelap), and make comparisons to control measurements performed on the island of Majuro in the southern Marshall Islands, measurements made in Central Park in New York City, and the standard agreed upon by the United States and the Republic of the Marshall Islands (RMI) governments (100 mrem/y = 1 mSv/y). External gamma radiation levels on Bikini Island significantly exceed this standard (P = <0.01), and external gamma radiation levels on the other islands are below the standard. To determine conclusively whether these islands are safe for habitation, radiation exposure through additional pathways such as food ingestion must be considered.

Concepts: Radioactive decay, Atoll, Marshall Islands, Bikini Atoll, Castle Bravo, Pacific Proving Grounds, Project 4.1


Every second greater than 10(25) antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earth’s surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically and seismologically informed models of the radiogenic lithosphere/mantle combined with the estimated antineutrino flux, as measured by KamLAND and Borexino, to determine the Earth’s total antineutrino luminosity at . We find a dominant flux of geo-neutrinos, predict sub-equal crust and mantle contributions, with ~1% of the total flux from man-made nuclear reactors.

Concepts: Earth, Sun, Radioactive decay, Uranium, Nuclear fission, Neutrino, Mantle, Crust


The Fukushima Daiichi Nuclear Power Plant (FNPP) accident released large amounts of radioactive substances into the environment. In order to provide basic information for biokinetics of radionuclides and for dose assessment of internal exposure brought by the FNPP accident, we determined the activity concentration of radionuclides in the organs of 79 cattle within a 20-km radius around the FNPP. In all the specimens examined, deposition of Cesium-134 ((134)Cs, half-life: 2.065 y) and (137)Cs (30.07 y) was observed. Furthermore, organ-specific deposition of radionuclides with relatively short half-lives was detected, such as silver-110m ((110m)Ag, 249.8 d) in the liver and tellurium-129m ((129m)Te, 33.6 d) in the kidney. Regression analysis showed a linear correlation between the radiocesium activity concentration in whole peripheral blood (PB) and that in each organ. The resulting slopes were organ dependent with the maximum value of 21.3 being obtained for skeletal muscles (R(2) = 0.83, standard error (SE) = 0.76). Thus, the activity concentration of (134) Cs and (137)Cs in an organ can be estimated from that in PB. The level of radioactive cesium in the organs of fetus and infants were 1.19-fold (R(2) = 0.62, SE = 0.12), and 1.51-fold (R(2) = 0.70, SE = 0.09) higher than that of the corresponding maternal organ, respectively. Furthermore, radiocesium activity concentration in organs was found to be dependent on the feeding conditions and the geographic location of the cattle. This study is the first to reveal the detailed systemic distribution of radionuclides in cattle attributed to the FNPP accident.

Concepts: Kidney, Chernobyl disaster, Liver, Radioactive decay, Uranium, Nuclear fission, Isotope, Half-life


Radiation dose rates were evaluated in three areas neighboring a restricted area within a 20- to 50-km radius of the Fukushima Daiichi Nuclear Power Plant in August-September 2012 and projected to 2022 and 2062. Study participants wore personal dosimeters measuring external dose equivalents, almost entirely from deposited radionuclides (groundshine). External dose rate equivalents owing to the accident averaged 1.03, 2.75, and 1.66 mSv/y in the village of Kawauchi, the Tamano area of Soma, and the Haramachi area of Minamisoma, respectively. Internal dose rates estimated from dietary intake of radiocesium averaged 0.0058, 0.019, and 0.0088 mSv/y in Kawauchi, Tamano, and Haramachi, respectively. Dose rates from inhalation of resuspended radiocesium were lower than 0.001 mSv/y. In 2012, the average annual doses from radiocesium were close to the average background radiation exposure (2 mSv/y) in Japan. Accounting only for the physical decay of radiocesium, mean annual dose rates in 2022 were estimated as 0.31, 0.87, and 0.53 mSv/y in Kawauchi, Tamano, and Haramachi, respectively. The simple and conservative estimates are comparable with variations in the background dose, and unlikely to exceed the ordinary permissible dose rate (1 mSv/y) for the majority of the Fukushima population. Health risk assessment indicates that post-2012 doses will increase lifetime solid cancer, leukemia, and breast cancer incidences by 1.06%, 0.03% and 0.28% respectively, in Tamano. This assessment was derived from short-term observation with uncertainties and did not evaluate the first-year dose and radioiodine exposure. Nevertheless, this estimate provides perspective on the long-term radiation exposure levels in the three regions.

Concepts: Cancer, Ionizing radiation, Chernobyl disaster, Radioactive decay, Nuclear power, Radiation poisoning, Background radiation, Absorbed dose


The Earth’s engine is driven by unknown proportions of primordial energy and heat produced in radioactive decay. Unfortunately, competing models of Earth’s composition reveal an order of magnitude uncertainty in the amount of radiogenic power driving mantle dynamics. Recent measurements of the Earth’s flux of geoneutrinos, electron antineutrinos from terrestrial natural radioactivity, reveal the amount of uranium and thorium in the Earth and set limits on the residual proportion of primordial energy. Comparison of the flux measured at large underground neutrino experiments with geologically informed predictions of geoneutrino emission from the crust provide the critical test needed to define the mantle’s radiogenic power. Measurement at an oceanic location, distant from nuclear reactors and continental crust, would best reveal the mantle flux, however, no such experiment is anticipated. We predict the geoneutrino flux at the site of the Jinping Neutrino Experiment (Sichuan, China). Within 8 years, the combination of existing data and measurements from soon to come experiments, including Jinping, will exclude end-member models at the 1σ level, define the mantle’s radiogenic contribution to the surface heat loss, set limits on the composition of the silicate Earth, and provide significant parameter bounds for models defining the mode of mantle convection.

Concepts: Earth, Radioactive decay, Uranium, Neutrino, Mantle, Crust, Structure of the Earth, Subduction