SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Radio

317

Non-thermal microwave/lower frequency electromagnetic fields (EMFs) act via voltage-gated calcium channel (VGCC) activation. Calcium channel blockers block EMF effects and several types of additional evidence confirm this mechanism. Low intensity microwave EMFs have been proposed to produce neuropsychiatric effects, sometimes called microwave syndrome, and the focus of this review is whether these are indeed well documented and consistent with the known mechanism(s) of action of such EMFs. VGCCs occur in very high densities throughout the nervous system and have near universal roles in release of neurotransmitters and neuroendocrine hormones. Soviet and Western literature shows that much of the impact of non-thermal microwave exposures in experimental animals occurs in the brain and peripheral nervous system, such that nervous system histology and function show diverse and substantial changes. These may be generated through roles of VGCC activation, producing excessive neurotransmitter/neuroendocrine release as well as oxidative/nitrosative stress and other responses. Excessive VGCC activity has been shown from genetic polymorphism studies to have roles in producing neuropsychiatric changes in humans. Two U.S. government reports from the 1970’s-80’s provide evidence for many neuropsychiatric effects of non-thermal microwave EMFs, based on occupational exposure studies. 18 more recent epidemiological studies, provide substantial evidence that microwave EMFs from cell/mobile phone base stations, excessive cell/mobile phone usage and from wireless smart meters can each produce similar patterns of neuropsychiatric effects, with several of these studies showing clear dose-response relationships. Lesser evidence from 6 additional studies suggests that short wave, radio station, occupational and digital TV antenna exposures may produce similar neuropsychiatric effects. Among the more commonly reported changes are sleep disturbance/insomnia, headache, depression/depressive symptoms, fatigue/tiredness,dysesthesia, concentration/attention dysfunction, memory changes, dizziness, irritability, loss of appetite/body weight, restlessness/anxiety, nausea, skin burning/tingling/dermographism and EEG changes. In summary, then, the mechanism of action of microwave EMFs, the role of the VGCCs in the brain, the impact of non-thermal EMFs on the brain, extensive epidemiological studies performed over the past 50 years, and five criteria testing for causality, all collectively show that various non-thermal microwave EMF exposures produce diverse neuropsychiatric effects.

Concepts: Central nervous system, Nervous system, Neuron, Brain, Human brain, Neurotransmitter, Calcium channel blocker, Radio

244

To mark the centenary of the 1918 influenza pandemic, the broadcasting network BBC have put together a 75-min documentary called ‘Contagion! The BBC Four Pandemic’. Central to the documentary is a nationwide citizen science experiment, during which volunteers in the United Kingdom could download and use a custom mobile phone app called BBC Pandemic, and contribute their movement and contact data for a day. As the ‘maths team’, we were asked to use the data from the app to build and run a model of how a pandemic would spread in the UK. The headline results are presented in the TV programme. Here, we document in detail how the model works, and how we shaped it according the incredibly rich data coming from the BBC Pandemic app. We have barely scratched the depth of the volunteer data available from the app. The work presented in this article had the sole purpose of generating a single detailed simulation of a pandemic influenza-like outbreak in the UK. When the BBC Pandemic app has completed its collection period, the vast dataset will be made available to the scientific community (expected early 2019). It will take much more time and input from a broad range of researchers to fully exploit all that this dataset has to offer. But here at least we were able to harness some of the power of the BBC Pandemic data to contribute something which we hope will capture the interest and engagement of a broad audience.

Concepts: Influenza, Science, United Kingdom, BBC World Service, Radio, 1918 flu pandemic, Television, BBC

226

BACKGROUND: Screen entertainment for young children has been associated with several aspects of psychosocial adjustment. Most research is from North America and focuses on television. Few longitudinal studies have compared the effects of TV and electronic games, or have investigated gender differences. PURPOSE: To explore how time watching TV and playing electronic games at age 5 years each predicts change in psychosocial adjustment in a representative sample of 7 year-olds from the UK. METHODS: Typical daily hours viewing television and playing electronic games at age 5 years were reported by mothers of 11 014 children from the UK Millennium Cohort Study. Conduct problems, emotional symptoms, peer relationship problems, hyperactivity/inattention and prosocial behaviour were reported by mothers using the Strengths and Difficulties Questionnaire. Change in adjustment from age 5 years to 7 years was regressed on screen exposures; adjusting for family characteristics and functioning, and child characteristics. RESULTS: Watching TV for 3 h or more at 5 years predicted a 0.13 point increase (95% CI 0.03 to 0.24) in conduct problems by 7 years, compared with watching for under an hour, but playing electronic games was not associated with conduct problems. No associations were found between either type of screen time and emotional symptoms, hyperactivity/inattention, peer relationship problems or prosocial behaviour. There was no evidence of gender differences in the effect of screen time. CONCLUSIONS: TV but not electronic games predicted a small increase in conduct problems. Screen time did not predict other aspects of psychosocial adjustment. Further work is required to establish causal mechanisms.

Concepts: Vacuum tube, Cohort study, Longitudinal study, Research methods, Causality, United Kingdom, Radio, Television

157

Mobile phone usage has become an integral part of our lives. However, the effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted by these devices on biological systems and specifically the reproductive systems are currently under active debate. A fundamental hindrance to the current debate is that there is no clear mechanism of how such non-ionising radiation influences biological systems. Therefore, we explored the documented impacts of RF-EMR on the male reproductive system and considered any common observations that could provide insights on a potential mechanism. Among a total of 27 studies investigating the effects of RF-EMR on the male reproductive system, negative consequences of exposure were reported in 21. Within these 21 studies, 11 of the 15 that investigated sperm motility reported significant declines, 7 of 7 that measured the production of reactive oxygen species documented elevated levels and 4 of 5 studies that probed for DNA damage highlighted increased damage, due to RF-EMR exposure. Associated with this, RF-EMR treatment reduced antioxidant levels in 6 of 6 studies that studied this phenomenon, while consequences of RF-EMR were successfully ameliorated with the supplementation of antioxidants in all 3 studies that carried out these experiments. In light of this, we envisage a two-step mechanism whereby RF-EMR is able to induce mitochondrial dysfunction leading to elevated ROS production. A continued focus on research which aims to shed light on the biological effects of RF-EMR will allow us to test and assess this proposed mechanism in a variety of cell types.

Concepts: Reproduction, Mitochondrion, Antioxidant, Electromagnetic radiation, Reactive oxygen species, Electromagnetic spectrum, Mobile phone, Radio

154

Insects are continually exposed to Radio-Frequency (RF) electromagnetic fields at different frequencies. The range of frequencies used for wireless telecommunication systems will increase in the near future from below 6 GHz (2 G, 3 G, 4 G, and WiFi) to frequencies up to 120 GHz (5 G). This paper is the first to report the absorbed RF electromagnetic power in four different types of insects as a function of frequency from 2 GHz to 120 GHz. A set of insect models was obtained using novel Micro-CT (computer tomography) imaging. These models were used for the first time in finite-difference time-domain electromagnetic simulations. All insects showed a dependence of the absorbed power on the frequency. All insects showed a general increase in absorbed RF power at and above 6 GHz, in comparison to the absorbed RF power below 6 GHz. Our simulations showed that a shift of 10% of the incident power density to frequencies above 6 GHz would lead to an increase in absorbed power between 3-370%.

Concepts: Fundamental physics concepts, Electromagnetic radiation, Frequency, Hertz, Wavelength, Sound, Radio, Heinrich Hertz

153

We propose a new approach to control the amplitude and phase distributions of electromagnetic fields over the aperture of a horn antenna. By loading a metamaterial lens inside the horn antenna, a tapered amplitude distribution of the aperture field is achieved, which can suppress the side-lobe radiations of the antenna. The metamaterial is further manipulated to achieve a flat phase distribution on the horn aperture to avoid the gain reduction that usually suffers in the conventional low-sidelobe antenna designs. A prototype of the metamaterial-loaded horn antenna is designed and fabricated. Both numerical simulations and measured results demonstrate the tapered aperture-field distribution and significant reduction of side-lobe and back-lobe radiations in the operating frequency band.

Concepts: Electromagnetism, Quantum mechanics, Optics, Fundamental physics concepts, Superlens, Frequency, Wavelength, Radio

151

There is a positive correlation between recall of tobacco-related television news and perceived risks of smoking and thoughts about quitting. The authors used Cision US, Inc., to create a sampling frame (N = 61,027) of local and national television news coverage of tobacco from October 1, 2008, to September 30, 2009, and to draw a nationally representative sample (N = 730) for content analysis. The authors conducted a descriptive study to determine the frequency and proportion of stories containing specified tobacco topics, frames, sources, and action messages, and the valence of the coverage. Valence was generally neutral; 68% of stories took a balanced stance, with 26% having a tenor supportive of tobacco control and 6% opposing tobacco control. The most frequently covered topics included smoking bans (n = 195) and cessation (n = 156). The least covered topics included hookah (n = 1) and menthol (n = 0). The majority of coverage lacked quoting any source (n = 345); government officials (n = 144) were the most quoted sources. Coverage lacked action messages or resources; 29 stories (<4%) included a message about cessation or advocacy, and 8 stories (1%) contained a resource such as a quitline. Television news can be leveraged by health communication professionals to increase awareness of underrepresented topics in tobacco control.

Concepts: Sample size, Sampling, United States, Tobacco, Communication, Hookah, Radio, Frame

148

Autonomous liquid-volume monitoring is crucial in ubiquitous healthcare. However, conventional approach is based on either human visual observation or expensive detectors, which are costly for future pervasive monitoring. Here we introduce a novel approach based on passive harmonic transponder antenna sensor and frequency hopping spread spectrum (FHSS) pattern analysis, to provide a very low cost wireless μL-resolution liquid-volume monitoring without battery or digital circuits. In our conceptual demonstration, the harmonic transponder comprises of a passive nonlinear frequency multiplier connected to a metamaterial-inspired 3-D antenna designed to be highly sensitive to the liquid-volume within a confined region. The transponder first receives some FHSS signal from an interrogator, then converts such signal to its harmonic band and re-radiates through the antenna sensor. The harmonic signal is picked up by a sniffer receiver and decoded through pattern analysis of the high dimensional FHSS signal strength data. A robust, zero power, absolute accuracy wireless liquid-volume monitoring is realized in the presence of strong direct coupling, background scatters, distance variance as well as near-field human-body interference. The concepts of passive harmonic transponder sensor, metamaterial-inspired antenna sensor, and FHSS pattern analysis based sensor decoding may help establishing cost-effective, energy-efficient and intelligent wireless pervasive healthcare monitoring platforms.

Concepts: Signal processing, Wave, Transducer, Radio, Multiplexing, Radio electronics, Spread spectrum, Frequency-hopping spread spectrum

145

Wireless local area network (WLAN) is a technology that combines computer network with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial Scientific Medical (ISM) band can be used in the WLAN environment. Because of the development of wireless communication technology and the use of the frequency bands without the need for authorization, the application of WLAN is becoming more and more extensive. As the key part of the WLAN system, the antenna must also be adapted to the development of WLAN communication technology. This paper designs two new dual-frequency microstrip antennas with the use of electromagnetic simulation software-High Frequency Structure Simulator (HFSS). The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size, and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch. The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside the patch. Simulation experiments prove that the two designed antennas have a higher gain and a favourable transmission characteristic in the working frequency range, which is in accordance with the requirements of WLAN communication.

Concepts: Electromagnetic radiation, Electromagnetic spectrum, Computer network, Radio, Radio frequency antenna types, Patch antenna, IEEE 802.11, Microstrip antenna

144

Wireless power delivery has the potential to seamlessly power our electrical devices as easily as data is transmitted through the air. However, existing solutions are limited to near contact distances and do not provide the geometric freedom to enable automatic and un-aided charging. We introduce quasistatic cavity resonance (QSCR), which can enable purpose-built structures, such as cabinets, rooms, and warehouses, to generate quasistatic magnetic fields that safely deliver kilowatts of power to mobile receivers contained nearly anywhere within. A theoretical model of a quasistatic cavity resonator is derived, and field distributions along with power transfer efficiency are validated against measured results. An experimental demonstration shows that a 54 m3 QSCR room can deliver power to small coil receivers in nearly any position with 40% to 95% efficiency. Finally, a detailed safety analysis shows that up to 1900 watts can be transmitted to a coil receiver enabling safe and ubiquitous wireless power.

Concepts: Magnetic field, Energy, Resonator, Radio, Power, Nikola Tesla, Watt, Wireless energy transfer