SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Quorum sensing

184

Twitching motility-mediated biofilm expansion is a complex, multicellular behavior that enables the active colonization of surfaces by many species of bacteria. In this study we have explored the emergence of intricate network patterns of interconnected trails that form in actively expanding biofilms of Pseudomonas aeruginosa. We have used high-resolution, phase-contrast time-lapse microscopy and developed sophisticated computer vision algorithms to track and analyze individual cell movements during expansion of P. aeruginosa biofilms. We have also used atomic force microscopy to examine the topography of the substrate underneath the expanding biofilm. Our analyses reveal that at the leading edge of the biofilm, highly coherent groups of bacteria migrate across the surface of the semisolid media and in doing so create furrows along which following cells preferentially migrate. This leads to the emergence of a network of trails that guide mass transit toward the leading edges of the biofilm. We have also determined that extracellular DNA (eDNA) facilitates efficient traffic flow throughout the furrow network by maintaining coherent cell alignments, thereby avoiding traffic jams and ensuring an efficient supply of cells to the migrating front. Our analyses reveal that eDNA also coordinates the movements of cells in the leading edge vanguard rafts and is required for the assembly of cells into the “bulldozer” aggregates that forge the interconnecting furrows. Our observations have revealed that large-scale self-organization of cells in actively expanding biofilms of P. aeruginosa occurs through construction of an intricate network of furrows that is facilitated by eDNA.

Concepts: DNA, Archaea, Bacteria, Pseudomonas aeruginosa, Cell wall, Polysaccharide, Biofilm, Quorum sensing

171

Quorum sensing is a process of chemical communication that bacteria use to monitor cell density and coordinate cooperative behaviors. Quorum sensing relies on extracellular signal molecules and cognate receptor pairs. While a single quorum-sensing system is sufficient to probe cell density, bacteria frequently use multiple quorum-sensing systems to regulate the same cooperative behaviors. The potential benefits of these redundant network structures are not clear. Here, we combine modeling and experimental analyses of the Bacillus subtilis and Vibrio harveyi quorum-sensing networks to show that accumulation of multiple quorum-sensing systems may be driven by a facultative cheating mechanism. We demonstrate that a strain that has acquired an additional quorum-sensing system can exploit its ancestor that possesses one fewer system, but nonetheless, resume full cooperation with its kin when it is fixed in the population. We identify the molecular network design criteria required for this advantage. Our results suggest that increased complexity in bacterial social signaling circuits can evolve without providing an adaptive advantage in a clonal population.

Concepts: Bacteria, Microbiology, Pseudomonas aeruginosa, Biofilm, Bacillus, Quorum sensing, Bioluminescence, Vibrio harveyi

164

Many Gram-negative plant pathogenic bacteria employ a N-acylhomoserine lactone (AHL)-based quorum sensing (QS) system to regulate their virulence traits. A sustainable biocontrol strategy has been developed using quorum quenching (QQ) bacteria to interfere with QS and protect plants from pathogens. Here, the prevalence and the diversity of QQ strains inhabiting tobacco leaf surfaces were explored. A total of 1177 leaf-associated isolates were screened for their ability to disrupt AHL-mediated QS, using the biosensor Chromobacterium violaceum CV026. One hundred and sixty-eight strains (14%) are capable of interfering with AHL activity. Among these, 106 strains (63%) of the culturable quenchers can enzymatically degrade AHL molecules, while the remaining strains might use other QS inhibitors to interrupt the chemical communication. Moreover, almost 79% of the QQ strains capable of inactivating AHLs enzymatically have lactonase activity. Further phylogenetic analysis based on 16S rDNA revealed that the leaf-associated QQ bacteria can be classified as Bacillus sp., Acinetobacter sp., Lysinibacillus sp., Serratia sp., Pseudomonas sp., and Myroides sp. The naturally occurring diversity of bacterial quenchers might provide opportunities to use them as effective biocontrol reagents for suppressing plant pathogen in situ.

Concepts: Bacteria, Microbiology, Pseudomonas aeruginosa, Pathogen, Cell wall, Biofilm, Quorum sensing, Pathogenic bacteria

156

Pseudomonas aeruginosa biofilm is commonly associated with chronic wound infection. A FDA approved wireless electroceutical dressing (WED), which in the presence of conductive wound exudate gets activated to generate electric field (0.3-0.9V), was investigated for its anti-biofilm properties. Growth of pathogenic P. aeruginosa strain PAO1 in LB media was markedly arrested in the presence of the WED. Scanning electron microscopy demonstrated that WED markedly disrupted biofilm integrity in a setting where silver dressing was ineffective. Biofilm thickness and number of live bacterial cells were decreased in the presence of WED. Quorum sensing genes lasR and rhlR and activity of electric field sensitive enzyme, glycerol-3-phosphate dehydrogenase was also repressed by WED. This work provides first electron paramagnetic resonance spectroscopy evidence demonstrating that WED serves as a spontaneous source of reactive oxygen species. Redox-sensitive multidrug efflux systems mexAB and mexEF were repressed by WED. Taken together, these observations provide first evidence supporting the anti-biofilm properties of WED.

Concepts: Immune system, Oxygen, Bacteria, Infection, Antibiotic resistance, Pseudomonas aeruginosa, Biofilm, Quorum sensing

38

The mammalian gut microbiota harbors a diverse ecosystem where hundreds of bacterial species interact with each other and their host. Given that bacteria use signals to communicate and regulate group behaviors (quorum sensing), we asked whether such communication between different commensal species can influence the interactions occurring in this environment. We engineered the enteric bacterium, Escherichia coli, to manipulate the levels of the interspecies quorum sensing signal, autoinducer-2 (AI-2), in the mouse intestine and investigated the effect upon antibiotic-induced gut microbiota dysbiosis. E. coli that increased intestinal AI-2 levels altered the composition of the antibiotic-treated gut microbiota, favoring the expansion of the Firmicutes phylum. This significantly increased the Firmicutes/Bacteroidetes ratio, to oppose the strong effect of the antibiotic, which had almost cleared the Firmicutes. This demonstrates that AI-2 levels influence the abundance of the major phyla of the gut microbiota, the balance of which is known to influence human health.

Concepts: Archaea, Bacteria, Gut flora, Antibiotic resistance, Escherichia coli, Quorum sensing, Firmicutes, Autoinducer-2

34

The dispersal phase that completes the biofilm lifecycle is of particular interest for its potential to remove recalcitrant, antimicrobial tolerant biofilm infections. Here we found that temperature is a cue for biofilm dispersal and a rise by 5 °C or more can induce the detachment of Pseudomonas aeruginosa biofilms. Temperature upshifts were found to decrease biofilm biomass and increase the number of viable freely suspended cells. The dispersal response appeared to involve the secondary messenger cyclic di-GMP, which is central to a genetic network governing motile to sessile transitions in bacteria. Furthermore, we used poly((oligo(ethylene glycol) methyl ether acrylate)-block-poly(monoacryloxy ethyl phosphate)-stabilized iron oxide nanoparticles (POEGA-b-PMAEP@IONPs) to induce local hyperthermia in established biofilms upon exposure to a magnetic field. POEGA-b-PMAEP@IONPs were non-toxic to bacteria and when heated induced the detachment of biofilm cells. Finally, combined treatments of POEGA-b-PMAEP@IONPs and the antibiotic gentamicin reduced by 2-log the number of colony-forming units in both biofilm and planktonic phases after 20 min, which represent a 3.2- and 4.1-fold increase in the efficacy against planktonic and biofilm cells, respectively, compared to gentamicin alone. The use of iron oxide nanoparticles to disperse biofilms may find broad applications across a range of clinical and industrial settings.

Concepts: Archaea, Bacteria, Iron, Antibiotic resistance, Pseudomonas aeruginosa, Sewage treatment, Biofilm, Quorum sensing

32

Bacteria become highly tolerant to antibiotics when nutrients are limited. The inactivity of antibiotic targets caused by starvation-induced growth arrest is thought to be a key mechanism producing tolerance. Here we show that the antibiotic tolerance of nutrient-limited and biofilm Pseudomonas aeruginosa is mediated by active responses to starvation, rather than by the passive effects of growth arrest. The protective mechanism is controlled by the starvation-signaling stringent response (SR), and our experiments link SR-mediated tolerance to reduced levels of oxidant stress in bacterial cells. Furthermore, inactivating this protective mechanism sensitized biofilms by several orders of magnitude to four different classes of antibiotics and markedly enhanced the efficacy of antibiotic treatment in experimental infections.

Concepts: Archaea, Bacteria, Fungus, Antibiotic resistance, Pseudomonas aeruginosa, Biofilm, Antibiotic, Quorum sensing

30

The opportunistic pathogen Pseudomonas aeruginosa uses a cell-cell communication system termed “quorum sensing” to control production of public goods, extracellular products that can be used by any community member. Not all individuals respond to quorum-sensing signals and synthesize public goods. Such social cheaters enjoy the benefits of the products secreted by cooperators. There are some P. aeruginosa cellular enzymes controlled by quorum sensing, and we show that quorum sensing-controlled expression of such private goods can put a metabolic constraint on social cheating and prevent a tragedy of the commons. Metabolic constraint of social cheating provides an explanation for private-goods regulation by a cooperative system and has general implications for population biology, infection control, and stabilization of quorum-sensing circuits in synthetic biology.

Concepts: Immune system, Bacteria, Enzyme, Opportunistic infection, Microbiology, Pseudomonas aeruginosa, Biofilm, Quorum sensing

28

In Pseudomonas aeruginosa PAO1, the pvdQ gene has been shown to have at least two functions. It encodes the acylase enzyme and hydrolyzes 3-oxo-C12-HSL, the key signaling molecule of quorum sensing system. In addition, pvdQ is involved in swarming motility. It is required and up-regulated during swarming motility, which is triggered by high cell densities. As high density bacterial populations also display elevated antibiotics resistance, studies have demonstrated swarm-cell differentiation in P. aeruginosa promotes increased resistance to various antibiotics. PvdQ acts as a signal during swarm-cell differentiation, and thus may play a role in P. aeruginosa antibiotic resistance. The aim of this study was to examine whether pvdQ was involved in modifying antibiotic susceptibility during swarming conditions and to investigate the mechanism by which this occurred. We constructed the PAO1pMEpvdQ strain, which overproduces PvdQ. PAO1pMEpvdQ promotes swarming motility, while PAO1ΔpvdQ abolishes swarming motility. In addition, both PAO1 and PAO1pMEpvdQ acquired resistance to ceftazidime, ciprofloxacin, meropenem, polymyxin B, and gentamicin, though PAO1pMEpvdQ exhibited a twofold to eightfold increase in antibiotic resistance compared to PAO1. These results indicate that pvdQ plays an important role in elevating antibiotic resistance via swarm-cell differentiation and possibly other mechanisms as well. We analyzed outer membrane permeability. Our data also suggest that pvdQ decreases P. aeruginosa outer membrane permeability, thereby elevating antibiotic resistance under swarming conditions. Our results suggest new approaches for reducing P. aeruginosa resistance.

Concepts: Bacteria, Antibiotic resistance, Pseudomonas aeruginosa, Phage therapy, Biofilm, Pseudomonas, Quorum sensing, Quinolone

28

Firefly luciferase is the most important and studied bioluminescence system. Due to very interesting characteristics, this system has gained numerous biomedical, pharmaceutical and bioanalytical applications, among others. In order to improve the use of this system, various researchers have tried to understand experimentally the colour of bioluminescence, and to create ways of tuning the colour emitted. The objective of this manuscript is to review the experimental studies of firefly luciferin and oxyluciferin, and related analogues, fluorescence and bioluminescence.

Concepts: Light, Science, Quorum sensing, Firefly, Bioluminescence, Luciferase, Luciferin, Coelenterazine