Discover the most talked about and latest scientific content & concepts.

Concept: Quantum mechanics


Quantum steering allows two parties to verify shared entanglement even if one measurement device is untrusted. A conclusive demonstration of steering through the violation of a steering inequality is of considerable fundamental interest and opens up applications in quantum communication. To date, all experimental tests with single-photon states have relied on post selection, allowing untrusted devices to cheat by hiding unfavourable events in losses. Here we close this ‘detection loophole’ by combining a highly efficient source of entangled photon pairs with superconducting transition-edge sensors. We achieve an unprecedented ∼62% conditional detection efficiency of entangled photons and violate a steering inequality with the minimal number of measurement settings by 48 s.d.s. Our results provide a clear path to practical applications of steering and to a photonic loophole-free Bell test.

Concepts: Photon, Quantum mechanics, Quantum field theory, Quantum entanglement, Bell's theorem, EPR paradox, Bell test experiments, Local hidden variable theory


: This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

Concepts: Mathematics, Quantum mechanics, Molecule, Chemistry, Computational chemistry, Quantum chemistry, Theoretical chemistry, Molecular Hamiltonian


Lymphatic filariasis (LF) is a globally significant disease, with 1.3 billion persons in 83 countries at risk. A coordinated effort of administering annual macrofilaricidal prophylactics to the entire at-risk population has succeeded in impacting and eliminating LF transmission in multiple regions. However, some areas in the South Pacific are predicted to persist as transmission sites, due in part to the biology of the mosquito vector, which has led to a call for additional tools to augment drug treatments. Autocidal strategies against mosquitoes are resurging in the effort against invasive mosquitoes and vector borne disease, with examples that include field trials of genetically modified mosquitoes and Wolbachia population replacement. However, critical questions must be addressed in anticipation of full field trials, including assessments of field competitiveness of transfected males and the risk of unintended population replacement.

Concepts: Quantum mechanics, Malaria, Infection, Mosquito, Vector, Filariasis, Doxycycline, The Mosquito


Nonlinear and switchable metamaterials achieved by artificial structuring on the subwavelength scale have become a central topic in photonics research. Switching with only a few quanta of excitation per metamolecule, metamaterial’s elementary building block, is the ultimate goal, achieving which will open new opportunities for energy efficient signal handling and quantum information processing. Recently, arrays of Josephson junction devices have been proposed as a possible solution. However, they require extremely high levels of nanofabrication. Here we introduce a new quantum superconducting metamaterial which exploits the magnetic flux quantization for switching. It does not contain Josephson junctions, making it simple to fabricate and scale into large arrays. The metamaterial was manufactured from a high-temperature superconductor and characterized in the low intensity regime, providing the first observation of the quantum phenomenon of flux exclusion affecting the far-field electromagnetic properties of the metamaterial.

Concepts: Quantum mechanics, Physics, Condensed matter physics, Superconductivity, Josephson effect, SQUID, Magnetic flux quantum, Brian David Josephson


The coupling of distinct systems underlies nearly all physical phenomena. A basic instance is that of interacting harmonic oscillators, giving rise to, for example, the phonon eigenmodes in a lattice. Of particular importance are the interactions in hybrid quantum systems, which can combine the benefits of each part in quantum technologies. Here we investigate a hybrid optomechanical system having three degrees of freedom, consisting of a microwave cavity and two micromechanical beams with closely spaced frequencies around 32 MHz and no direct interaction. We record the first evidence of tripartite optomechanical mixing, implying that the eigenmodes are combinations of one photonic and two phononic modes. We identify an asymmetric dark mode having a long lifetime. Simultaneously, we operate the nearly macroscopic mechanical modes close to the motional quantum ground state, down to 1.8 thermal quanta, achieved by back-action cooling. These results constitute an important advance towards engineering of entangled motional states.

Concepts: Quantum mechanics, Physics, Laser, Interaction, Oscillation, Wave, Normal mode, Harmonic oscillator


Wide wavelength ranges of light localization and scattering characteristics can be attributed to shape-dependent longitude surface plasmon resonance in complicated nanostructures. We have studied this phenomenon by spectroscopic measurement and a three-dimensional numerical simulation, for the first time, on the high-density branched silver nanowires and nanomeshworks at room temperature. These nanostructures were fabricated with simple light-induced colloidal method. In the range from the visible to the near-infrared wavelengths, light has been found effectively trapped in those trapping sites which were randomly distributed at the corners, the branches, and the junctions of the nanostructures in those nanostructures in three dimensions. The broadened bandwidth electromagnetic field enhancement property makes these branched nanostructures useful in optical processing and photovoltaic applications.

Concepts: Spectroscopy, Electromagnetism, Quantum mechanics, Fundamental physics concepts, Light, Electromagnetic radiation, Extraordinary optical transmission, Visible spectrum


In this study, we investigate the effect of annealing and nitrogen amount on electronic transport properties in n- and p-type-doped Ga0.68In0.32NyAs1 - y/GaAs quantum well (QW) structures with y = 0%, 0.9%, 1.2%, 1.7%. The samples are thermal annealed at 700°C for 60 and 600 s, and Hall effect measurements have been performed between 10 and 300 K. Drastic decrease is observed in the electron mobility of n-type N-containing samples due to the possible N-induced scattering mechanisms and increasing effect mass of the alloy. The temperature dependence of electron mobility has an almost temperature insensitive characteristic, whereas for p-type samples hole mobility is decreased drastically at T > 120 K. As N concentration is increased, the hole mobility also increased as a reason of decreasing lattice mismatch. Screening effect of N-related alloy scattering over phonon scattering in n-type samples may be the reason of the temperature-insensitive electron mobility. At low temperature regime, hole mobility is higher than electron mobility by a factor of 3 to 4. However, at high temperatures (T > 120 K), the mobility of p-type samples is restricted by the scattering of the optical phonons. Because the valance band discontinuity is smaller compared to the conduction band, thermionic transport of holes from QW to the barrier material, GaAs, also contributes to the mobility at high temperatures that results in a decrease in mobility. The hole mobility results of as-grown samples do not show a systematic behavior, while annealed samples do, depending on N concentration. Thermal annealing does not show a significant improvement of electron mobility.

Concepts: Quantum mechanics, Condensed matter physics, Semiconductor, Gas, Phonon, Semiconductors, 2DEG, Electron hole


Quantum annealing is a combinatorial optimization technique inspired by quantum mechanics. Here we show that a spin model for the k-coloring of large dense random graphs can be field tuned so that its acceptance ratio diverges during Monte Carlo quantum annealing, until a ground state is reached. We also find that simulations exhibiting such a diverging acceptance ratio are generally more effective than those tuned to the more conventional pattern of a declining and/or stagnating acceptance ratio. This observation facilitates the discovery of solutions to several well-known benchmark k-coloring instances, some of which have been open for almost two decades.

Concepts: Mathematics, Photon, Quantum mechanics, Physics, Quantum field theory, Quantum electrodynamics, Monte Carlo, Graph theory


The interaction between the inner atoms/cluster and the outer fullerene cage is the source of various novel properties of endohedral metallofullerenes. Herein, we introduce an adatom-type spin polarization defect on the surface of a typical endohedral stable U(2)@C(60) to predict the associated structure and electronic properties of U(2)@C(61) based on the density functional theory method. We found that defect induces obvious changes in the electronic structure of this metallofullerene. More interestingly, the ground state of U(2)@C(61) is nonet spin in contrast to the septet of U(2)@C(60). Electronic structure analysis shows that the inner U atoms and the C ad-atom on the surface of the cage contribute together to this spin state, which is brought about by a ferromagnetic coupling between the spin of the unpaired electrons of the U atoms and the C ad-atom. This discovery may provide a possible approach to adapt the electronic structure properties of endohedral metallofullerenes.

Concepts: Scientific method, Magnetic field, Quantum mechanics, Fundamental physics concepts, Density functional theory, Pauli exclusion principle, Fullerene, Metallofullerene


We present and analyze a gedanken experiment and show that the assumption that an antenna operating at a single frequency can transmit more than two independent information channels to the far field violates the Second Law of Thermodynamics. Transmission of a large number of channels, each associated with an angular momenta ‘twisted wave’ mode, to the far field in free space is therefore not possible.

Concepts: Quantum mechanics, Fundamental physics concepts, Electromagnetic radiation, Wave, Philosophy, Frequency, Second law of thermodynamics, Laws of thermodynamics