Discover the most talked about and latest scientific content & concepts.

Concept: Quadrupole ion trap


Nine recently described Aspergillus species and four known species in section Versicolores were tested for their ability to produce sterigmatocystin on two liquid media, Czapek w/20 % Sucrose Broth and Yeast Extract Broth grown in the dark for 1 week at 25 °C. Detection and quantification of ST were performed by reversed-phase liquid chromatography coupled with electrospray ionization ion trap mass spectrometry. Limit of detection was 3 ng/mL and limit of quantification was 10 ng/mL. Nine newly described Aspergillus species from various substrates, A. amoenus, A. creber, A. cvjetkovicii, A. fructus, A. jensenii, A. puulaauensis, A. subversicolor, A. tennesseensis and A. venenatus in section Versicolores were found to produce sterigmatocystin. Production was confirmed in recently collected isolates of A. protuberus and A. versicolor. A. austroafricanus and A. tabacinus did not produce sterigmatocystin.

Concepts: Mass spectrometry, Chromatography, Analytical chemistry, Detection limit, Electrospray ionization, Taylor cone, Ion source, Quadrupole ion trap


In this study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) with scheduled multiple reaction monitoring (MRM) enhanced product ion (EPI) method was developed for simultaneous determination of 40 compounds with weight loss effect, including bisacodyl, phenolphthalein, and sibutramine and its metabolites, etc. They might be adulterated in health supplements to get prominent weight loss effect. The samples were analyzed using a Q-Trap 5500 coupled with high performance liquid chromatography (HPLC) and a CORTECS ultra performance liquid chromatography (UPLC) C18 column (100 mm x 2.1 mm x1.6 µm). Scheduled MRM was used as survey scan, MS2 spectra acquired in the EPI mode were used to perform library searching to increase the confidence of detection. Limits of detection were less than 10 ng/g for the majority of the analytes. A total of 447 weight loss products were tested in our laboratory in the past three years. Among these samples, 119 samples were found to be adulterated with one or more weight loss compounds, including sibutramine, its metabolites benzyl sibutramine and desmethyl sibutramine; phenolphthalein; bisacodyl; furosemide; liothyronine (T3); and thyroxine (T4). Copyright © 2015 John Wiley & Sons, Ltd.

Concepts: Chromatography, High performance liquid chromatography, Analytical chemistry, Liquid chromatography-mass spectrometry, Quadrupole ion trap, Fourier transform ion cyclotron resonance


We present a new two-plate linear ion trap mass spectrometer that overcomes both performance-based and miniaturization-related issues with prior designs. Borosilicate glass substrates are patterned with aluminum electrodes on one side and wire-bonded to printed circuit boards. Ions are trapped in the space between two such plates. Tapered ejection slits in each glass plate eliminate issues with charge build-up within the ejection slit and with blocking of ions that are ejected at off-nominal angles. The tapered slit allows miniaturization of the trap features (electrode size, slit width) needed for further reduction of trap size while allowing the use of substrates that are still thick enough to provide ruggedness during handling, assembly, and in-field applications. Plate spacing was optimized during operation using a motorized translation stage. A scan rate of 2300 Th/s with a sample mixture of toluene and deuterated toluene (D8) and xylenes (a mixture of o-, m-, p-) showed narrowest peak widths of 0.33 Th (FWHM). Graphical Abstract ᅟ.

Concepts: Cathode, Hydrogen, Atom, Ion source, Quadrupole ion trap, Fourier transform ion cyclotron resonance, Printed circuit board, Breadboard


Even through more sensitive methods for quantifying trace levels of curcumin in plasma were urgently needed, beyond tandem mass spectrometry, the Paul trap MS/MS/MS has never been tested for curcumin quantification. Because of its unique trap function to accumulate target compounds selectively by optimizing multiple stage MS experiments, it showed great potential to remove background issues reported at low concentration ranges. A novel Triple stage Ion Trap Mass Spectrometry coupled with High Performance Liquid Chromatography (HPLC-ITMS/MS/MS) method has been developed and validated as a curcumin quantification method, for the first time. The use of isotope labeled curcumin-d6 as a novel internal standard (IS) is suggested and tested according to FDA validation procedure. A simplified sample preparation is introduced and validated by coupling a novel acetonitrile precipitation with molecular weight cut-off size exclusion method. This method demonstrated excellent recovery rate of 96.69%-109.26% and minimum matrix effect of 95.40%-110.98%. The lower limit of detection (LLOD) and lower limit of quantification (LLOQ) for curcumin in rat plasma were 0.1 ng/ml and 1 ng/ml respectively. The linear calibration curve for quantifying curcumin in rat plasma was 1-3000 ng/ml (r2 > 0.99) with intra-day and inter-day RSD and accuracy within ±5.11%. Its application in a Pharmacokinetics (PK) study demonstrated detection of curcumin at a very low plasma level (1.0 ng/ml) and it would be applied to larger sample size animal and clinical pharmacokinetic studies. The presented ITMS/MS/MS quantification method has shown its advantages, including better sensitivity, accuracy, precision, wider calibration range and simplicity in sample preparation, when comparing with other curcumin LC/MS analysis methods in the latest 4 years.

Concepts: Sample size, Mass spectrometry, Chromatography, High performance liquid chromatography, Analytical chemistry, Quadrupole ion trap, Tandem mass spectrometry, Ion trap


An adsorbent, consisting of silica-coated Fe3O4 grafted graphene oxide and β-cyclodextrin (Fe3O4@SiO2/GO/β-CD), which possessed the merits of antioxidation, superparamagnetism, high surface area, high supramolecular recognition and environment friendly, was successfully fabricated. Considering the synergy between β-CD and graphene oxide in adsorption mechanism, the synthesized adsorbent could grasp compounds especially with aromatic structures through π-π interaction, hydrophobic interaction and host-guest inclusion complex forming. Based on the advantages, a magnetic solid phase extraction (MSPE) method for 9 PGRs using Fe3O4@SiO2/GO/β-CD as adsorbents was developed in this study. The characterizations of Fe3O4@SiO2/GO/β-CD were performed on Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectroscopy (XPS), CHNS/O elemental analyzer, scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). Under the optimal MSPE condition, the Fe3O4@SiO2/GO/β-CD exhibited selectivity capability toward 9 PGRs when compared with Fe3O4@SiO2/GO. Meanwhile, the selectivity capability of Fe3O4@SiO2/GO/β-CD was higher than that of Fe3O4@SiO2/GO/α-CD except for 4-FPA. When the developed MSPE procedure was coupled with ultra-high performance liquid chromatography-triple quadrupole linear ion trap mass spectrometry (UHPLC-QTrap-MS/MS) to quantitative analysis of 9 PGRs, linearities ranging from 2 to 50 μg/kg were achieved for 9 PGRs with the correlation coefficients (r2) in the range of 0.9975-0.9999. The limits of detection (LODs) for 9 analytes varied from 0.04 to 0.29 μg/kg. Finally, the proposed technique was applied to analyze PGRs residues in mutiple vegetable samples.

Concepts: Electron, Spectroscopy, Nuclear magnetic resonance, Fourier transform, X-ray photoelectron spectroscopy, Quadrupole ion trap, Infrared spectroscopy, Fourier transform spectroscopy


It has been demonstrated that uracil has a preponderant tautomeric form, but it is also known that different tautomers co-exist in this equilibrium. In this work, mass spectrometry is used as a helpful tool to analyse the equilibria, using derivative compounds to forbid the presence of some tautomers and ion trap mass spectrometry to follow relevant fragmentation pathways. Theoretical calculations were performed to confirm tautomers abundance by energy minimization in gas phase. Analysis of mass spectra of uracil, three methyl-substituted uracils, 2-thiouracil and three benzouracils suggest that uracil exists mainly as three tautomers in gas phase: one major structure that corresponds to the classical structure of uracil (pyrimidine-2,4(1H,3H)-dione) bearing two carbonyls and two NH moieties, and two minor enolic forms (4-hydroxypyrimidin-2(1H)-one and 2-hydroxypyrimidin-4(1H)-one). Such tautomeric distribution is supported by theoretical calculations, which show that they are the three most stable tautomers.

Concepts: Mass spectrometry, Fundamental physics concepts, Hydrogen, Classical mechanics, Quadrupole ion trap, Plasma, Fourier transform ion cyclotron resonance, Tautomer


In this paper, the effects of constant uniform magnetic fields on a miniature linear ion trap mass spectrometer with hyperbolic electrodes are simulated using SIMION 8.0 3D software. Magnetic fields in different directions have different effects on the trajectories of the trapped ions and the shape of the ion cloud. When the magnetic field is applied in the z-direction, namely the ion injection direction, the magnetic field will cause the ions focusing to the z-axis, and exert a compression effect on the ion cloud. When the magnetic field is applied in the x-y plane, the original ion cloud will be expanded due to the action of the applied magnetic field, and the ion cloud plane after expansion is always perpendicular to the direction of the magnetic field. The discovery of influence field of magnetic will bring some useful inspiration for the improvement of ion trapping efficiency, mass resolution, sensitivity and trapping capacity, which is conductive to the performance enhancement utilization of magnetic field, even in the industrial application development and other aspects.

Concepts: Electron, Magnetic field, Fundamental physics concepts, Perpendicular, Quadrupole ion trap, Complex number, Cartesian coordinate system, Ion trap


The performance of miniaturized ion trap mass analyzers is limited, in part, by the accuracy with which electrodes can be fabricated and positioned relative to each other. Alignment of plates in a two-plate planar LIT is ideal to characterize misalignment effects, as it represents the simplest possible case, having only six degrees of freedom (DOF) (three translational and three rotational). High-precision motorized actuators were used to vary the alignment between the two ion trap plates in five DOFs-x, y, z, pitch, and yaw. A comparison between the experiment and previous simulations shows reasonable agreement. Pitch, or the degree to which the plates are parallel along the axial direction, has the largest and sharpest impact to resolving power, with resolving power dropping noticeably with pitch misalignment of a fraction of a degree. Lateral displacement (x) and yaw (rotation of one plate, but plates remain parallel) both have a strong impact on ion ejection efficiency, but little effect on resolving power. The effects of plate spacing (y-displacement) on both resolving power and ion ejection efficiency are attributable to higher-order terms in the trapping field. Varying the DC (axial) trapping potential can elucidate the effects where more misalignments in more than one DOF affect performance. Implications of these results for miniaturized ion traps are discussed. Graphical Abstract ᅟ.

Concepts: Fundamental physics concepts, Degree, Classical mechanics, Academic degree, Quadrupole ion trap, Fourier transform ion cyclotron resonance, Ion trap, Kingdon trap


A sensitive method for simultaneous determination of amantadine and rimantadine in feed was developed using an ultra-high-performance liquid chromatography-triple quadrupole linear ion trap mass spectrometry (UHPLC-Qtrap-MS) in the multiple reaction monitoring information-dependent acquisition-enhanced product ion (MRM-IDA-EPI) mode, and employing the mixed cation exchange (MCX) solid-phase extraction column as sample cleanup and amantadine-d15 and rimantadine-d4 as internal standards, respectively. Compared to traditional MRM mode, for the targeted drugs in feed simultaneously both the secondary mass spectra and MRM information can be obtained using UHPLC-Qtrap-MS with MRM-IDA-EPI mode, and thus more accurate qualitative confirmation results achieved even at lower concentration of 0.2 μg/L in acceptable purity fit values. After optimization of sample preparation, good linearities (R > 0.9994) were obtained over the concentration range from 1 to 200 μg/L for amantadine and rimantadine. The precision was validated by intra-day and inter-day, and the relative standard deviations were all within 9.61%. Mean recoveries ranged from 76.1 to 112% at spiked concentrations of 0.5-100 μg/kg in three types of feed samples, including formula feed and complex concentrated feed for pigs and premix feed for chicken. The limits of detection (LODs) and quantification (LOQs) were 0.2 and 0.5 μg/kg for both drugs, respectively. The application in real feed samples further proved the accuracy and reliability of the developed method. This method provides an important tool to detect illegal uses of amantadine and rimantadine in feed. Graphical abstract Simultaneous quantitation and qualitative confirmation of amantadine and rimantadine in feed by MRM-IDA-EPI.

Concepts: Mass spectrometry, Concentration, Analytical chemistry, Standard deviation, Accuracy and precision, Ion source, Quadrupole ion trap, Fourier transform ion cyclotron resonance


Developing a comprehensive understanding of the reactivity of uranium-containing species remains an important goal in areas ranging from the development of nuclear fuel processing methods to studies of the migration and fate of the element in the environment. Electrospray ionization (ESI) is an effective way to generate gas-phase complexes containing uranium for subsequent studies of intrinsic structure and reactivity. Recent experiments by our group have demonstrated that the relatively low levels of residual H2O in a 2-D, linear ion trap (LIT) make it possible to examine fragmentation pathways and reactions not observed in earlier studies conducted with 3-D ion traps (Van Stipdonk et al. J. Am. Soc. Mass Spectrom. 14, 1205-1214, 2003). In the present study, we revisited the dissociation of complexes composed of uranyl nitrate cation [UVIO2(NO3)]+ coordinated by alcohol ligands (methanol and ethanol) using the 2-D LIT. With relatively low levels of background H2O, collision-induced dissociation (CID) of [UVIO2(NO3)]+ primarily creates [UO2(O2)]+ by the ejection of NO. However, CID (using He as collision gas) of [UVIO2(NO3)]+ creates [UO2(H2O)]+ and UO2+ when the 2-D LIT is used with higher levels of background H2O. Based on the results presented here, we propose that product ion spectrum in the previous experiments was the result of a two-step process: initial formation of [UVIO2(O2)]+ followed by rapid exchange of O2 for H2O by ion-molecule reaction. Our experiments illustrate the impact of residual H2O in ion trap instruments on the product ions generated by CID and provide a more accurate description of the intrinsic dissociation pathway for [UVIO2(NO3)]+. Graphical Abstract ᅟ.

Concepts: Mass spectrometry, Chemistry, Ion, Ion source, Quadrupole ion trap, Ion trap