SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Public transport

179

Whilst being hailed as the remedy to the world’s ills, cities will need to adapt in the 21(st) century. In particular, the role of public transport is likely to increase significantly, and new methods and technics to better plan transit systems are in dire need. This paper examines one fundamental aspect of transit: network centrality. By applying the notion of betweenness centrality to 28 worldwide metro systems, the main goal of this paper is to study the emergence of global trends in the evolution of centrality with network size and examine several individual systems in more detail. Betweenness was notably found to consistently become more evenly distributed with size (i.e. no “winner takes all”) unlike other complex network properties. Two distinct regimes were also observed that are representative of their structure. Moreover, the share of betweenness was found to decrease in a power law with size (with exponent 1 for the average node), but the share of most central nodes decreases much slower than least central nodes (0.87 vs. 2.48). Finally the betweenness of individual stations in several systems were examined, which can be useful to locate stations where passengers can be redistributed to relieve pressure from overcrowded stations. Overall, this study offers significant insights that can help planners in their task to design the systems of tomorrow, and similar undertakings can easily be imagined to other urban infrastructure systems (e.g., electricity grid, water/wastewater system, etc.) to develop more sustainable cities.

Concepts: Central America, The Remedy, Train station, Public transport, Social network, Complex system, City, Centrality

81

This report summarizes U.S. influenza activity* during October 2, 2016-February 4, 2017,(†) and updates the previous summary (1). Influenza activity in the United States began to increase in mid-December, remained elevated through February 4, 2017, and is expected to continue for several more weeks. To date, influenza A (H3N2) viruses have predominated overall, but influenza A (H1N1)pdm09 and influenza B viruses have also been identified.

Concepts: Public transport, Orthomyxoviridae, World Health Organization, Humid subtropical climate, U.S. state, Poverty in the United States, Influenza, United States

47

Streetcar or train tracks in urban areas are difficult for bicyclists to negotiate and are a cause of crashes and injuries. This study used mixed methods to identify measures to prevent such crashes, by examining track-related crashes that resulted in injuries to cyclists, and obtaining information from the local transit agency and bike shops.

Concepts: Railroad car, Mode of transport, Public transport, Bus, Bicycle, Tram, Train, Sustainable transport

43

This study aims to quantify and describe the burden of fatal pedestrian crashes among persons using wheelchairs in the USA from 2006 to 2012.

Concepts: Sidewalk, Walking, Pedestrian crossing, Traffic, Public transport

34

Fiscal interventions are promising strategies to improve diets, reduce cardiovascular disease and diabetes (cardiometabolic diseases; CMD), and address health disparities. The aim of this study is to estimate the impact of specific dietary taxes and subsidies on CMD deaths and disparities in the US.

Concepts: Poverty in the United States, Nutrition, Public transport, Mixed economy, Medicine, Disease, Death, United States

31

With an increasing proportion of the population living in cities, mass transportation has been rapidly expanding to facilitate the demand, yet there is a concern that mass transit has the potential to result in excessive exposure to noise, and subsequently noise-induced hearing loss.

Concepts: Transportation, Sustainable transport, Park and ride, Public transport timetable, Train station, Public transport

31

Objectives. We assessed changes in transit-associated walking in the United States from 2001 to 2009 and documented their importance to public health. Methods. We examined transit walk times using the National Household Travel Survey, a telephone survey administered by the US Department of Transportation to examine travel behavior in the United States. Results. People are more likely to transit walk if they are from lower income households, are non-White, and live in large urban areas with access to rail systems. Transit walkers in large urban areas with a rail system were 72% more likely to transit walk 30 minutes or more per day than were those without a rail system. From 2001 to 2009, the estimated number of transit walkers rose from 7.5 million to 9.6 million (a 28% increase); those whose transit-associated walking time was 30 minutes or more increased from approximately 2.6 million to 3.4 million (a 31% increase). Conclusions. Transit walking contributes to meeting physical activity recommendations. Study results may contribute to transportation-related health impact assessment studies evaluating the impact of proposed transit systems on physical activity, potentially influencing transportation planning decisions. (Am J Public Health. Published online ahead of print January 17, 2013: e1-e7. doi:10.2105/AJPH.2012.300912).

Concepts: Pedestrian, Urban area, Rail transport, Sustainable transport, Transport, Transportation planning, United States, Public transport

28

Previous studies have shown accelerated gastric emptying after sleeve gastrectomy. This study aimed to determine whether a correlation exists between immediate postoperative gastroduodenal transit time and weight loss after laparoscopic sleeve gastrectomy (LSG). Specifically, correlation tests were conducted to determine whether more rapid transit after LSG correlated with increased weight loss.

Concepts: Airport, Public transport, Rail transport, Public transport timetable, Mark Ovenden, Commuter rail, Rapid transit, Obesity

23

Urbanization is an important factor contributing to the global spread of dengue in recent decades, especially in tropical regions. However, the impact of public transportation system on local spread of dengue in urban settings remains poorly understood, due to the difficulty in collecting relevant locality, transportation and disease incidence data with sufficient detail, and in suitably quantifying the combined effect of proximity and passenger flow. We quantify proximity and passenger traffic data relating to 2014-2015 dengue outbreaks in Kaohsiung, Taiwan by introducing a “Risk Associated with Metro Passengers Presence” (RAMPP), which considers the passenger traffic of stations located within a fixed radius, giving more weight to the busier and/or closer stations. In order to analyze the contagion risk associated with nearby presence of one or more Kaohsiung Rapid Transit (KRT) stations, we cluster the Li’s (the fourth level administrative subdivision in Taiwan) of Kaohsiung based on their RAMPP value using the K-means algorithm. We then perform analysis of variance on distinct clusterings and detect significant differences for both years. The subsequent post hoc tests (Dunn) show that yearly incidence rate observed in the areas with highest RAMPP values is always significantly greater than that recorded with smaller RAMPP values. RAMPP takes into account of population mobility in urban settings via the use of passenger traffic information of urban transportation system, that captures the simple but important idea that large amount of passenger flow in and out of a station can dramatically increase the contagion risk of dengue in the neighborhood. Our study provides a new perspective in identifying high-risk areas for transmissions and thus enhances our understanding of how public rapid transit system contributes to disease spread in densely populated urban areas, which could be useful in the design of more effective and timely intervention and control measures for future outbreaks.

Concepts: Park and ride, Commuter rail, Rail transport, Mark Ovenden, Airport, Public transport timetable, Public transport, Rapid transit

16

Access to detailed comparisons in air quality variations encountered when commuting through a city offers the urban traveller more informed choice on how to minimise personal exposure to inhalable pollutants. In this study we report on an experiment designed to compare atmospheric contaminants inhaled during bus, subway train, tram and walking journeys through the city of Barcelona. Average number concentrations of particles 10-300 nm in size, N, are lowest in the commute using subway trains (N<2.5×10(4)part.cm(-3)), higher during tram travel and suburban walking (2.5×10(4)cm(-3)5.0×10(4)cm(-3)), with extreme transient peaks at busy traffic crossings commonly exceeding 1.0×10(5)cm(-3) and accompanied by peaks in Black Carbon and CO. Subway particles are coarser (mode 90nm) than in buses, trams or outdoors (<70nm), and concentrations of fine particulate matter (PM2.5) and Black Carbon are lower in the tram when compared to both bus and subway. CO2 levels in public transport reflect passenger numbers, more than tripling from outdoor levels to >1200ppm in crowded buses and trains. There are also striking differences in inhalable particle chemistry depending on the route chosen, ranging from aluminosiliceous at roadsides and near pavement works, ferruginous with enhanced Mn, Co, Zn, Sr and Ba in the subway environment, and higher levels of Sb and Cu inside the bus. We graphically display such chemical variations using a ternary diagram to emphasise how “air quality” in the city involves a consideration of both physical and chemical parameters, and is not simply a question of measuring particle number or mass.

Concepts: Soot, Train, Air pollution, Particulate, Light rail, Bus, Public transport, Tram