Discover the most talked about and latest scientific content & concepts.

Concept: Pterygota


Although humans and arthropods have been living and evolving together for all of our history, we know very little about the arthropods we share our homes with apart from major pest groups. Here we surveyed, for the first time, the complete arthropod fauna of the indoor biome in 50 houses (located in and around Raleigh, North Carolina, USA). We discovered high diversity, with a conservative estimate range of 32-211 morphospecies, and 24-128 distinct arthropod families per house. The majority of this indoor diversity (73%) was made up of true flies (Diptera), spiders (Araneae), beetles (Coleoptera), and wasps and kin (Hymenoptera, especially ants: Formicidae). Much of the arthropod diversity within houses did not consist of synanthropic species, but instead included arthropods that were filtered from the surrounding landscape. As such, common pest species were found less frequently than benign species. Some of the most frequently found arthropods in houses, such as gall midges (Cecidomyiidae) and book lice (Liposcelididae), are unfamiliar to the general public despite their ubiquity. These findings present a new understanding of the diversity, prevalence, and distribution of the arthropods in our daily lives. Considering their impact as household pests, disease vectors, generators of allergens, and facilitators of the indoor microbiome, advancing our knowledge of the ecology and evolution of arthropods in homes has major economic and human health implications.

Concepts: Evolution, Nematocera, Insect, Arthropod, Flies, Ant, Spider, Pterygota


The evolution of flight is a key innovation that may enable the extreme diversification of insects. Nonetheless, many species-rich, winged insect groups contain flightless lineages. The loss of flight may promote allopatric differentiation due to limited dispersal power and may result in a high speciation rate in the flightless lineage. Here we show that loss of flight accelerates allopatric speciation using carrion beetles (Coleoptera: Silphidae). We demonstrate that flightless species retain higher genetic differentiation among populations and comprise a higher number of genetically distinct lineages than flight-capable species, and that the speciation rate with the flightless state is twice that with the flight-capable state. Moreover, a meta-analysis of 51 beetle species from 15 families reveals higher genetic differentiation among populations in flightless compared with flight-capable species. In beetles, which represent almost one-fourth of all described species, repeated evolution of flightlessness may have contributed to their steady diversification since the Mesozoic era.

Concepts: Evolution, Biology, Insect, Beetle, Speciation, Insects, Pterygota, Endopterygota


The red flour beetle Tribolium castaneum is an emerging insect model organism representing the largest insect order, Coleoptera, which encompasses several serious agricultural and forest pests. Despite the ecological and economic importance of beetles, most insect olfaction studies have so far focused on dipteran, lepidopteran, or hymenopteran systems.

Concepts: Biology, Insect, Larva, Antenna, Insects, Pterygota, Tenebrionidae, Endopterygota


During the mid-Cretaceous, angiosperms diversified from several nondiverse lineages to their current global domination [1], replacing earlier gymnosperm lineages [2]. Several hypotheses explain this extensive radiation [3], one of which involves proliferation of insect pollinator associations in the transition from gymnosperm to angiosperm dominance. However, most evidence supports gymnosperm-insect pollinator associations, buttressed by direct evidence of pollen on insect bodies, currently established for four groups: Thysanoptera (thrips), Neuroptera (lacewings), Diptera (flies), and now Coleoptera (beetles). Each group represents a distinctive pollination mode linked to a unique mouthpart type and feeding guild [4-9]. Extensive indirect evidence, based on specialized head and mouthpart morphology, is present for one of these pollinator types, the long-proboscid pollination mode [10], representing minimally ten family-level lineages of Neuroptera, Mecoptera (scorpionflies), and Diptera [8, 10, 11]. A recurring feature uniting these pollinator modes is host associations with ginkgoalean, cycad, conifer, and bennettitalean gymnosperms. Pollinator lineages bearing these pollination modes were categorized into four evolutionary cohorts during the 35-million-year-long angiosperm radiation, each defined by its host-plant associations (gymnosperm or angiosperm) and evolutionary pattern (extinction, continuation, or origination) during this interval [12]. Here, we provide the first direct evidence for one cohort, exemplified by the beetle Darwinylus marcosi, family Oedemeridae (false blister beetles), that had an earlier gymnosperm (most likely cycad) host association, later transitioning onto angiosperms [13]. This association constitutes one of four patterns explaining the plateau of family-level plant lineages generally and pollinating insects specifically during the mid-Cretaceous angiosperm radiation [12].

Concepts: Insect, Plant, Pollination, Pollen, Insects, Pterygota, Gymnosperm, Endopterygota


Explaining the taxonomic richness of the insects, comprising over half of all described species, is a major challenge in evolutionary biology. Previously, several evolutionary novelties (key innovations) have been posited to contribute to that richness, including the insect bauplan, wings, wing folding and complete metamorphosis, but evidence over their relative importance and modes of action is sparse and equivocal. Here, a new dataset on the first and last occurrences of fossil hexapod (insects and close relatives) families is used to show that basal families of winged insects (Palaeoptera, e.g. dragonflies) show higher origination and extinction rates in the fossil record than basal wingless groups (Apterygota, e.g. silverfish). Origination and extinction rates were maintained at levels similar to Palaeoptera in the more derived Polyneoptera (e.g. cockroaches) and Paraneoptera (e.g. true bugs), but extinction rates subsequently reduced in the very rich group of insects with complete metamorphosis (Holometabola, e.g. beetles). Holometabola show evidence of a recent slow-down in their high net diversification rate, whereas other winged taxa continue to diversify at constant but low rates. These data suggest that wings and complete metamorphosis have had the most effect on family-level insect macroevolution, and point to specific mechanisms by which they have influenced insect diversity through time.

Concepts: Evolution, Insect, Charles Darwin, Insects, Pterygota, Insect wing, Endopterygota, Pupa


Insects exhibit a wide diversity of anatomical specializations in their adult and immature stages associated with particular aspects of their biology. The order Neuroptera (lacewings, antlions, and their relatives) are a moderately diverse lineage of principally predatory animals, at least in their immature stages, as all have a modified piercing-sucking mandible-maxillary complex that allows them to drain fluids from their prey. As such, the larvae of various groups have evolved unique anatomical and behavioral specializations for approaching and subduing their prey, particularly the green lacewings (Chrysopidae), where immatures are also adept at camouflage [1-4]. Here we report the discovery of a unique mode of life among mid-Cretaceous mesochrysopids, an early stem group to modern green lacewings [5-7] exhibiting a combination of morphological modifications in both adults and larvae unknown among living and fossil Neuroptera, even across winged insects. The new mesochrysopids exhibit a uniquely prolonged thorax, elongate legs, and dramatically reduced hind wings in adults, and larvae have extremely elongate, slender legs with pectinate pretarsal claws and lacking trumpet-shaped empodia. The peculiarities of the larvae include features principally found in spider-associated insect groups, implying that these lacewings were early specialists on web-spinning spiders, either as active predators or kleptoparasites. This reveals a dramatic and ancient degree of ecological refinement in a major lineage of insect predators, for a food resource otherwise not utilized by most lacewings.

Concepts: Evolution, Insect, Ecology, Biological pest control, Pterygota, Neuroptera, Chrysopidae, Hemerobiidae


The position of the Zoraptera remains one of the most challenging and uncertain concerns in ordinal-level phylogenies of the insects. Zoraptera have been viewed as having a close relationship with five different groups of Polyneoptera, or as being allied to the Paraneoptera or even Holometabola. Although rDNAs have been widely used in phylogenetic studies of insects, the application of the complete 28S rDNA are still scattered in only a few orders. In this study, a secondary structure model of the complete 28S rRNAs of insects was reconstructed based on all orders of Insecta. It was found that one length-variable region, D3-4, is particularly distinctive. The length and/or sequence of D3-4 is conservative within each order of Polyneoptera, but it can be divided into two types between the different orders of the supercohort, of which the enigmatic order Zoraptera and Dictyoptera share one type, while the remaining orders of Polyneoptera share the other. Additionally, independent evidence from phylogenetic results support the clade (Zoraptera+Dictyoptera) as well. Thus, the similarity of D3-4 between Zoraptera and Dictyoptera can serve as potentially valuable autapomorphy or synapomorphy in phylogeny reconstruction. The clades of (Plecoptera+Dermaptera) and ((Grylloblattodea+Mantophasmatodea)+(Embiodea+Phasmatodea)) were also recovered in the phylogenetic study. In addition, considering the other studies based on rDNAs, this study reached the highest congruence with previous phylogenetic studies of Holometabola based on nuclear protein coding genes or morphology characters. Future comparative studies of secondary structures across deep divergences and additional taxa are likely to reveal conserved patterns, structures and motifs that can provide support for major phylogenetic lineages.

Concepts: Biology, Insect, Phylogenetic nomenclature, Phylogenetics, Cladistics, Insects, Pterygota, Neoptera


In the last decade, new methods of estimating global species richness have been developed and existing ones improved through the use of more appropriate statistical tools and new data. Taking the mean of most of these new estimates indicates that globally there are approximately 1.5 million, 5.5 million, and 7 million species of beetles, insects, and terrestrial arthropods, respectively. Previous estimates of 30 million species or more based on the host specificity of insects to plants now seem extremely unlikely. With 1 million insect species named, this suggests that 80% remain to be discovered and that a greater focus should be placed on less-studied taxa such as many families of Coleoptera, Diptera, and Hymenoptera and on poorly sampled parts of the world. DNA tools have revealed many new species in taxonomically intractable groups, but unbiased studies of previously wellresearched insect faunas indicate that 1-2% of species may be truly cryptic. Expected final online publication date for the Annual Review of Entomology Volume 63 is January 7, 2018. Please see for revised estimates.

Concepts: Statistics, Insect, Arthropod, Crustacean, Beetle, Insects, Pterygota, Endopterygota


The coexistence of ecologically similar species (i.e. species utilizing the same resource) is a major topic in ecology. Communities are assembled either through the biotic interactions of ecologically similar species, e.g. competition, or by the abiotic separation of species along gradients of environmental conditions. Here, we investigated the temporal segregation, succession and seasonality of dung-inhabiting Coleoptera and Diptera that utilize an identical resource in exactly the same way. The data were collected from two temperate pastures, one in the United Kingdom and the second in the Czech Republic. There was no evident temporal separation between ecologically similar coleopterous or dipterous taxa during succession. In contrast, these two orders were almost perfectly separated seasonally in both combined and site-specific datasets. Flies were most abundant in the summer, and beetles were more abundant in the spring and autumn. Ecologically similar beetles and flies also displayed seasonal separation in both combined and site-specific data. Analyses within site-specific data sets revealed such a separation at both the order and species level. Season is therefore the main temporal axis separating ecologically similar species of dung-inhabiting insects in temperate habitats, while succession aggregates species that may have similar environmental tolerances (to e.g. dung moisture). This separation between ecologically similar taxa of beetles and flies may be attributable to either competition-based niche separation or to temperature tolerance-based habitat filtering, since flies have peak activity in warmer months while beetles have peak activity in cooler months.

Concepts: Insect, Ecology, United Kingdom, Beetle, Fly, Insects, Pterygota, Endopterygota


While comprehensive phylogenies have proven an invaluable tool in ecology and evolution, their construction is made increasingly challenging both by the scale and structure of publically available sequences. The distinct partition between gene-rich (genomic) and species-rich (DNA barcode) data is a feature of data that has been largely overlooked, yet presents a key obstacle to scaling supermatrix analysis.I present a phyloinformatics framework for draft construction of a species-level phylogeny of insects (Class Insecta). Matrix-building requires separately optimized pipelines for nuclear transcriptomic, mitochondrial genomic, and species-rich markers, whereas tree-building requires hierarchical inference in order to capture species-breadth while retaining deep-level resolution. The phylogeny of insects contains 49358 species, 13865 genera, 760 families, 31 orders. Deep-level splits largely reflected previous findings for sections of the tree that are data rich or unambiguous, such as inter-ordinal Endopterygota and Dictyoptera, the recently evolved and relatively homogeneous Lepidoptera, Hymenoptera, Brachycera (Diptera) and Cucujiformia (Coleoptera). However, analysis of bias, matrix construction and gene-tree variation suggests confidence in some relationships (such as in Polyneoptera) is less than has been indicated by the matrix bootstrap method. To assess the utility of the insect tree as a tool in query profiling, several tree-based taxonomic assignment methods are compared. Using mined test datasets of known species membership, a tendency is observed for greater accuracy of species-level assignments where using a fixed, comprehensive tree-of-life in contrast to methods generating smaller de novo reference trees.Described herein is a solution to the discrepancy in the way data is fit into supermatrices. The resulting tree facilitates wider studies of insect diversification and application of advanced descriptions of diversity in community studies, amongst other presumed applications.

Concepts: Evolution, Species, Insect, Lepidoptera, Taxonomic rank, Pterygota, Endopterygota, Neoptera