SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Psychrometrics

286

The role of relative humidity in the aerosol transmission of influenza was examined in a simulated examination room containing coughing and breathing manikins.

Concepts: Hygrometer, Psychrometrics, Influenza, Relative humidity, Humidity

190

Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world.

Concepts: Particulate, Psychrometrics, Smog, Climate, Fog, Precipitation, Humidity, Relative humidity

167

In 2015, more than 200,000 saiga antelopes died in 3 weeks in central Kazakhstan. The proximate cause of death is confirmed as hemorrhagic septicemia caused by the bacterium Pasteurella multocida type B, based on multiple strands of evidence. Statistical modeling suggests that there was unusually high relative humidity and temperature in the days leading up to the mortality event; temperature and humidity anomalies were also observed in two previous similar events in the same region. The modeled influence of environmental covariates is consistent with known drivers of hemorrhagic septicemia. Given the saiga population’s vulnerability to mass mortality and the likely exacerbation of climate-related and environmental stressors in the future, management of risks to population viability such as poaching and viral livestock disease is urgently needed, as well as robust ongoing veterinary surveillance. A multidisciplinary approach is needed to research mass mortality events under rapid environmental change.

Concepts: Physical quantities, Psychrometrics, Future, Pasteurella multocida, Demography, Death, Humidity, Relative humidity

28

Anionic hydrated titanate (HnTiOm: HTO) nanosheets and cationic magnesium-aluminum layered double hydroxide (Mg-Al LDH) nanosheets were electrophoretically deposited on positively and negatively charged indium tin oxide (ITO)-coated glass substrates, respectively. The HTO nanosheets and Mg-Al LDH nanosheets obtained were identified in neutral water as H2Ti4O9•nH2O with a -potential of -23mV and Mg6Al2(OH)18•4.5H2O with a -potential of +41 mV, respectively. Dense and smooth HTO and Mg-Al LDH films with layered structures with thicknesses of about 10-15m were prepared in 300 s at 7.5 V by electrophoretic deposition (EPD) from the nanosheet suspensions. Both EPD HTO and LDH films showed elasticity because of their layered laminate structures. The HTO thick films demonstrated large adsorption properties and high photocatalytic activity, while the Mg-Al LDH thick films showed relatively high ionic conductivity of 10-5 Scm-1 at 80°C and 80% relative humidity.

Concepts: Dew point, Psychrometrics, Physical quantities, Humidity, Indium tin oxide, Indium, Relative humidity, Indium(III) oxide

27

Electrospinning is an efficient and flexible method for nanofiber production, but it is influenced by many systemic, process, and environmental parameters that govern the electrospun product morphology. This study systematically investigates the influence of relative humidity (RH) on the electrospinning process. The results showed that the morphology of the electrospun product (shape and diameter) can be manipulated with precise regulation of RH during electrospinning. Because the diameter of nanofibers correlates with their rigidity, it was shown that RH control can lead to manipulation of material mechanical properties. Finally, based on the solution’s rheological parameter-namely, phase shift angle-we were able to predict the loss of homogenous nanofiber structure in correlation with RH conditions during electrospinning. This research addresses the mechanism of RH impact on the electrospinning process and offers the background to exploit it in order to better control nanomaterial properties and alter its applicability.

Concepts: Hygrometer, Humidity, Psychrometrics, Relative humidity, Nanomaterials

27

OBJECTIVES: The high values of thermal resistance (R(ct)) and/or vapor resistance (R(et)) of chemical protective clothing (CPC) induce a considerable thermal stress. The present study compared the physiological strain induced by CPCs and evaluates the relative importance of the fabrics' R(ct), R(et), and air permeability in determining heat strain. METHODS: Twelve young (20-30 years) healthy, heat-acclimated male subjects were exposed fully encapsulated for 3h daily to an exercise-heat stress (35°C and 30% relative humidity, walking on a motor-driven treadmill at a pace of 5 km h(1) and a 4% inclination, in a work-rest cycle of 45min work and 15min rest). Two bipack CPCs (PC1 and PC2) were tested and the results were compared with those attained by two control suits-a standard cotton military BDU (CO1) and an impermeable material suit (CO2). RESULTS: The physiological burden imposed by the two bilayer garments was within the boundaries set by the control conditions. Overall, PC2 induced a lower strain, which was closer to CO1, whereas PC1 was closer to CO2. Air permeability of the PC2 cloth was almost three times higher than that of PC1, enabling a better heat dissipation and consequently a lower physiological strain. Furthermore, air permeability characteristic of the fabrics, which is associated with its construction and weave, significantly correlated with the physiological strain, whereas the correlation with R(ct), R(et), and weight was poor. CONCLUSIONS: The results emphasize the importance of air permeability in reducing the physiological strain induced by CPCs.

Concepts: Textile, Clothing, Linear elasticity, Psychrometrics, Relative humidity, Humidity, Water vapor, Heat

26

Allyl isothiocyanate (AITC) is a wide-spectrum antimicrobial compound found in mustard seeds, produced when their tissues are disrupted. The formation of AITC in mustard seed is mediated by the myrosinase enzyme which catalyzes the release of volatile AITC from a glucosinolate-sinigrin. Since water is a substrate in the reaction, humidity from the air can be used to activate the release of AITC from mustard seed. In this study, defatted and partially defatted mustard seed meals were ground into powders with particle size ranging from 5 to 300 μm. The mustard seed meal powder (MSMP) samples were enclosed within hermetically sealed glass jars wherein the headspace air was adjusted to 85% or 100% relative humidity at 5, 20, or 35 °C. Data from gas chromatography analysis showed that AITC release rate and amount increased with increasing relative humidity and temperature. Moreover, the release rate can be manipulated by particle size and lipid content of the MSMP samples. The amount of AITC released ranged from 2 to 17 mg/g MSMP within 24 h under the experimental conditions tested. In view of the antimicrobial properties of AITC, the mustard meal powder may be used as a natural antimicrobial material for extending the shelf life of food products.

Concepts: Mustard plant, Psychrometrics, Chromatography, Humidity, Mustard seed, Food, Relative humidity, Mustard

24

There is a long-standing dispute about indoor air humidity and perceived indoor air quality (IAQ) and associated health effects. Complaints about sensory irritation in eyes and upper airways are generally among top-two symptoms together with the perception “dry air” in office environments. This calls for an integrated analysis of indoor air humidity and eye and airway health effects. This overview has reviewed the literature about the effects of extended exposure to low humidity on perceived IAQ, sensory irritation symptoms in eyes and airways, work performance, sleep quality, virus survival, and voice disruption. Elevation of the indoor air humidity may positively impact perceived IAQ, eye symptomatology, and possibly work performance in the office environment; however, mice inhalation studies do not show exacerbation of sensory irritation in the airways by low humidity. Elevated humidified indoor air appears to reduce nasal symptoms in patients suffering from obstructive apnea syndrome, while no clear improvement on voice production has been identified, except for those with vocal fatigue. Both low and high RH, and perhaps even better absolute humidity (water vapor), favors transmission and survival of influenza virus in many studies, but the relationship between temperature, humidity, and the virus and aerosol dynamics is complex, which in the end depends on the individual virus type and its physical/chemical properties. Dry and humid air perception continues to be reported in offices and in residential areas, despite the IAQ parameter “dry air” (or “wet/humid air”) is semantically misleading, because a sensory organ for humidity is non-existing in humans. This IAQ parameter appears to reflect different perceptions among other odor, dustiness, and possibly exacerbated by desiccation effect of low air humidity. It is salient to distinguish between indoor air humidity (relative or absolute) near the breathing and ocular zone and phenomena caused by moisture-damage of the building construction and emissions therefrom. Further, residential versus public environments should be considered as separate entities with different characteristics and demands of humidity. Research is needed about particle, bacteria and virus dynamics indoors for improvement of quality of life and with more focus on the impact of absolute humidity. “Dry (or wet) air” should be redefined to become a meaningful IAQ descriptor.

Concepts: Indoor air quality, Perception, Air conditioning, Sense, Relative humidity, Psychrometrics, Water vapor, Humidity

24

It has been demonstrated that precooling with ice slurry ingestion enhances endurance exercise capacity in the heat. However, no studies have yet evaluated the optimal timing of ice slurry ingestion for precooling. This study aimed to investigate the effects of varying the timing of ice slurry ingestion for precooling on endurance exercise capacity in a warm environment. Ten active male participants completed 3 experimental cycling trials to exhaustion at 55% peak power output (PPO) after 15min of warm-up at 30% PPO at 30°C and 80% relative humidity. Three experimental conditions were set: no ice slurry ingestion (CON), pre-warm-up ice slurry ingestion (-1°C; 7.5gkg(-1)) (PRE), and post-warm-up ice slurry ingestion (POST). Rectal and mean skin temperatures at the beginning of exercise in the POST condition (37.1±0.2°C, 33.8±0.9°C, respectively) were lower than those in the CON (37.5±0.3°C; P<0.001, 34.8±0.8°C; P<0.01, respectively) and PRE (37.4±0.2°C; P<0.01, 34.6±0.7°C; P<0.01, respectively) conditions. These reductions increased heat storage capacity and resulted in improved exercise capacity in the POST condition (60.2±8.7min) compared to that in the CON (52.0±11.9min; effect size [ES]=0.78) and PRE (56.9±10.4min; ES=0.34) conditions. Ice slurry ingestion after warm-up effectively reduced both rectal and skin temperatures and increased cycling time to exhaustion in a warm environment. Timing ice slurry ingestion to occur after warm-up may be effective for precooling in a warm environment.

Concepts: Psychrometrics, Effect, Humidity, Effectiveness, Thermodynamics, Heat, Exercise, Relative humidity

13

To quantify the risk of knee pain exacerbation associated with temperature, relative humidity, air pressure and precipitation in persons with knee osteoarthritis.

Concepts: Fog, Psychrometrics, Water vapor, Climate, Precipitation, Relative humidity, Atmospheric thermodynamics, Humidity