SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Protein

292

Polybia-MP1 (MP1) is a bioactive host-defense peptide with known anticancer properties. Its activity is attributed to excess serine (phosphatidylserine (PS)) on the outer leaflet of cancer cells. Recently, higher quantities of phosphatidylethanolamine (PE) were also found at these cells' surface. We investigate the interaction of MP1 with model membranes in the presence and absence of POPS (PS) and DOPE (PE) to understand the role of lipid composition in MP1’s anticancer characteristics. Indeed we find that PS lipids significantly enhance the bound concentration of peptide on the membrane by a factor of 7-8. However, through a combination of membrane permeability assays and imaging techniques we find that PE significantly increases the susceptibility of the membrane to disruption by these peptides and causes an order-of-magnitude increase in membrane permeability by facilitating the formation of larger transmembrane pores. Significantly, atomic-force microscopy imaging reveals differences in the pore formation mechanism with and without the presence of PE. Therefore, PS and PE lipids synergistically combine to enhance membrane poration by MP1, implying that the combined enrichment of both these lipids in the outer leaflet of cancer cells is highly significant for MP1’s anticancer action. These mechanistic insights could aid development of novel chemotherapeutics that target pathological changes in the lipid composition of cancerous cells.

Concepts: Protein, Cancer, Breast cancer, Oncology, Cell membrane, Chemotherapy, Leukemia, Lipid bilayer

284

Methodological limitations compromise the validity of U.S. nutritional surveillance data and the empirical foundation for formulating dietary guidelines and public health policies.

Concepts: Protein, Public health, Health, Metabolism, Nutrition, Obesity, Malnutrition, Health sciences

280

High-protein (HP) intake during weight loss (WL) therapy is often recommended because it reduces the loss of lean tissue mass. However, HP intake could have adverse effects on metabolic function, because protein ingestion reduces postprandial insulin sensitivity. In this study, we compared the effects of ∼10% WL with a hypocaloric diet containing 0.8 g protein/kg/day and a hypocaloric diet containing 1.2 g protein/kg/day on muscle insulin action in postmenopausal women with obesity. We found that HP intake reduced the WL-induced decline in lean tissue mass by ∼45%. However, HP intake also prevented the WL-induced improvements in muscle insulin signaling and insulin-stimulated glucose uptake, as well as the WL-induced adaptations in oxidative stress and cell structural biology pathways. Our data demonstrate that the protein content of a WL diet can have profound effects on metabolic function and underscore the importance of considering dietary macronutrient composition during WL therapy for people with obesity.

Concepts: Protein, Nutrition, Enzyme, Insulin, Diabetes mellitus, Obesity, Adipose tissue, Metabolic syndrome

279

Circadian organization of the mammalian transcriptome is achieved by rhythmic recruitment of key modifiers of chromatin structure and transcriptional and translational processes. These rhythmic processes, together with posttranslational modification, constitute circadian oscillators in the brain and peripheral tissues, which drive rhythms in physiology and behavior, including the sleep-wake cycle. In humans, sleep is normally timed to occur during the biological night, when body temperature is low and melatonin is synthesized. Desynchrony of sleep-wake timing and other circadian rhythms, such as occurs in shift work and jet lag, is associated with disruption of rhythmicity in physiology and endocrinology. However, to what extent mistimed sleep affects the molecular regulators of circadian rhythmicity remains to be established. Here, we show that mistimed sleep leads to a reduction of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 1.0% during forced desynchrony of sleep and centrally driven circadian rhythms. Transcripts affected are key regulators of gene expression, including those associated with chromatin modification (methylases and acetylases), transcription (RNA polymerase II), translation (ribosomal proteins, initiation, and elongation factors), temperature-regulated transcription (cold inducible RNA-binding proteins), and core clock genes including CLOCK and ARNTL (BMAL1). We also estimated the separate contribution of sleep and circadian rhythmicity and found that the sleep-wake cycle coordinates the timing of transcription and translation in particular. The data show that mistimed sleep affects molecular processes at the core of circadian rhythm generation and imply that appropriate timing of sleep contributes significantly to the overall temporal organization of the human transcriptome.

Concepts: DNA, Protein, Gene, Cell nucleus, Gene expression, Transcription, RNA, Circadian rhythm

272

Food consumption is thought to induce sleepiness. However, little is known about how postprandial sleep is regulated. Here, we simultaneously measured sleep and food intake of individual flies and found a transient rise in sleep following meals. Depending on the amount consumed, the effect ranged from slightly arousing to strongly sleep inducing. Postprandial sleep was positively correlated with ingested volume, protein, and salt-but not sucrose-revealing meal property-specific regulation. Silencing of leucokinin receptor (Lkr) neurons specifically reduced sleep induced by protein consumption. Thermogenetic stimulation of leucokinin (Lk) neurons decreased whereas Lk downregulation by RNAi increased postprandial sleep, suggestive of an inhibitory connection in the Lk-Lkr circuit. We further identified a subset of non-leucokininergic cells proximal to Lkr neurons that rhythmically increased postprandial sleep when silenced, suggesting that these cells are cyclically gated inhibitory inputs to Lkr neurons. Together, these findings reveal the dynamic nature of postprandial sleep.

Concepts: DNA, Protein, Nutrition, Eating, Ingestion, Food, Induced demand, Meal

271

Electronic plants, e-Plants, are an organic bioelectronic platform that allows electronic interfacing with plants. Recently we have demonstrated plants with augmented electronic functionality. Using the vascular system and organs of a plant, we manufactured organic electronic devices and circuits in vivo, leveraging the internal structure and physiology of the plant as the template, and an integral part of the devices. However, this electronic functionality was only achieved in localized regions, whereas new electronic materials that could be distributed to every part of the plant would provide versatility in device and circuit fabrication and create possibilities for new device concepts. Here we report the synthesis of such a conjugated oligomer that can be distributed and form longer oligomers and polymer in every part of the xylem vascular tissue of a Rosa floribunda cutting, forming long-range conducting wires. The plant’s structure acts as a physical template, whereas the plant’s biochemical response mechanism acts as the catalyst for polymerization. In addition, the oligomer can cross through the veins and enter the apoplastic space in the leaves. Finally, using the plant’s natural architecture we manufacture supercapacitors along the stem. Our results are preludes to autonomous energy systems integrated within plants and distribute interconnected sensor-actuator systems for plant control and optimization.

Concepts: Protein, Blood, Integrated circuit, Monomer, Transistor, Vascular plant, Fern, Vascular tissue

261

The consumption of a high protein diet (>4 g/kg/d) in trained men and women who did not alter their exercise program has been previously shown to have no significant effect on body composition. Thus, the purpose of this investigation was to determine if a high protein diet in conjunction with a periodized heavy resistance training program would affect indices of body composition, performance and health.

Concepts: Protein, Health, Nutrition, Weight loss, Training, Diet, Personal life, High protein diet

259

The healthspan of mice is enhanced by killing senescent cells using a transgenic suicide gene. Achieving the same using small molecules would have a tremendous impact on quality of life and burden of age-related chronic diseases. Here, we describe the rationale for identification and validation of a new class of drugs termed senolytics, which selectively kill senescent cells. By transcript analysis, we discovered increased expression of pro-survival networks in senescent cells, consistent with their established resistance to apoptosis. Using siRNA to silence expression of key nodes of this network, including ephrins (EFNB1 or 3), PI3Kδ, p21, BCL-xL, or plasminogen activated inhibitor-2, killed senescent cells, but not proliferating or quiescent, differentiated cells. Drugs targeting these factors selectively killed senescent cells. Dasatinib eliminated senescent human fat cell progenitors, while quercetin was more effective against senescent human endothelial cells and mouse BM-MSCs. The combination of dasatinib and quercetin was effective in eliminating senescent MEFs. In vivo, this combination reduced senescent cell burden in chronologically aged, radiation-exposed, and progeroid Ercc1(-/Δ) mice. In old mice, cardiac function and carotid vascular reactivity were improved 5 days after a single dose. Following irradiation of one limb in mice, a single dose led to improved exercise capacity for at least 7 months following drug treatment. Periodic drug administration extended healthspan in Ercc1(-/∆) mice, delaying age-related symptoms and pathology, osteoporosis and loss of intervertebral disc proteoglycans. These results demonstrate the feasibility of selectively ablating senescent cells and the efficacy of senolytics for alleviating symptoms of frailty and extending healthspan. This article is protected by copyright. All rights reserved.

Concepts: DNA, Protein, Gene, Gene expression, Atherosclerosis, Organism, Copyright, KILL

254

There have been an increasing number of reports implicating Gammaproteobacteria often carrying genes of drug resistance from colonized sink traps to vulnerable hospitalized patients. However, the mechanism of transmission from the wastewater of the sink P-trap to patients remains poorly understood. Herein we report the use of a designated hand washing sink lab gallery to model dispersion of green fluorescent protein (GFP)- expressing Escherichia coli from sink wastewater to the surrounding environment. We found no dispersion of GFP-E.coli directly from the P-trap to the sink basin or surrounding countertop with coincident water flow from a faucet. However, when the GFP-E.coli were allowed to mature in the P-trap under conditions similar to a hospital environment a GFP-E.coli containing putative biofilm extended upward over seven days to reach the strainer. This subsequently resulted in droplet dispersion to the surrounding areas (<30 inches) during faucet operation. We also demonstrated that P-trap colonization could occur by retrograde transmission along a common pipe. We postulate that the organisms mobilize up to the strainer from the P-trap resulting in droplet dispersion rather than directly from the P-trap. This work helps to further define the mode of transmission of bacteria from a P-trap reservoir to a vulnerable hospitalized patient.Importance Many recent reports demonstrate that sink drain pipes become colonized with highly consequential multidrug resistant bacteria, which then result in hospital acquired infections. However, the mechanism of dispersal of bacteria from the sink to patients has not been fully elucidated. Through establishment of a unique sink gallery this work found that a staged mode of transmission involving biofilm growth from the lower pipe to the sink strainer and subsequent splatter to the bowl and surrounding area occurs rather than splatter directly from the water in the lower pipe. We have also demonstrated that bacterial transmission can occur via connections in wastewater plumbing to neighboring sinks. This work helps to more clearly define the mechanism and risk of transmission from a wastewater source to hospitalized patients in a world with increasingly antibiotic resistant bacteria which can thrive in wastewater environments and cause infections in vulnerable patients.

Concepts: Protein, Gene, Bacteria, Antibiotic resistance, Escherichia coli, Pseudomonas aeruginosa, Plumbing, Sink

253

The purpose of this review was to determine whether past research provides conclusive evidence about the effects of type and timing of ingestion of specific sources of protein by those engaged in resistance weight training. Two essential, nutrition-related, tenets need to be followed by weightlifters to maximize muscle hypertrophy: the consumption of 1.2-2.0 g protein.kg -1 of body weight, and >=44-50 kcal.kg-1 of body weight. Researchers have tested the effects of timing of protein supplement ingestion on various physical changes in weightlifters. In general, protein supplementation pre- and post-workout increases physical performance, training session recovery, lean body mass, muscle hypertrophy, and strength. Specific gains, differ however based on protein type and amounts. Studies on timing of consumption of milk have indicated that fat-free milk post-workout was effective in promoting increases in lean body mass, strength, muscle hypertrophy and decreases in body fat. The leucine content of a protein source has an impact on protein synthesis, and affects muscle hypertrophy. Consumption of 3–4 g of leucine is needed to promote maximum protein synthesis. An ideal supplement following resistance exercise should contain whey protein that provides at least 3 g of leucine per serving. A combination of a fast-acting carbohydrate source such as maltodextrin or glucose should be consumed with the protein source, as leucine cannot modulate protein synthesis as effectively without the presence of insulin. Such a supplement post-workout would be most effective in increasing muscle protein synthesis, resulting in greater muscle hypertrophy and strength. In contrast, the consumption of essential amino acids and dextrose appears to be most effective at evoking protein synthesis prior to rather than following resistance exercise. To further enhance muscle hypertrophy and strength, a resistance weight- training program of at least 10–12 weeks with compound movements for both upper and lower body exercises should be followed.

Concepts: Protein, Amino acid, Glucose, Muscle, Physical exercise, Strength training, Exercise physiology, Bodybuilding