Discover the most talked about and latest scientific content & concepts.

Concept: Prostaglandin


It is now well established that major depression is accompanied and characterized by altered responses of the immune-inflammatory system. In this study we investigated the pro-inflammatory activation of monocytes isolated from depressed patients as a parameter not influenced by such confounds as the time of day, the nutritional and exercise status or the age and gender of patients. Monocytes from depressed patients and from healthy controls were isolated in vitro; after 24-h incubation under basal conditions, cells were exposed for 24-h to 100 ng/ml of endotoxin (bacterial lipopolysaccharide, LPS). We found that monocytes from drug-free depressed patients and controls release the same amounts of prostaglandin E2 (PGE2) under basal conditions, whereas monocytes from patients are dramatically less reactive to LPS (8.62-fold increase vs previous 24 hrs) compared to healthy controls (123.3-fold increase vs previous 24 hrs). Such blunted prostanoid production was paralleled by a reduction in COX-2 gene expression, whereas other pro-inflammatory mediators, namely interleukin-1β (IL-1 β) and -6 (IL-6) showed a trend to increased gene expression. The above changes were not associated to increased levels of circulating glucocorticoids. After 8 months of antidepressive drug treatment, the increase in PGE2 production after the endotoxin challenge was partially restored, whereas the increase in IL-1 β and -6 levels observed at baseline was completely abolished. In conclusion, our findings show that the reactivity of monocytes from depressed patients might be considered as a marker of the immune-inflammatory disorders associated to depression, although the lack of paired healthy controls at follow-up does not allow to conclude that monocyte reactivity to endotoxin is also a marker of treatment outcome.

Concepts: DNA, Gene, Genetics, Gene expression, Bacteria, Lipopolysaccharide, Prostaglandin E2, Prostaglandin


Sulforaphane (SFN) is a dietary cancer preventive with incompletely characterized mechanism(s) of cancer prevention. Since prostaglandin E2 (PGE2) promotes cancer progression, we hypothesized that SFN may block PGE2 synthesis in cancer cells. We found that SFN indeed blocked PGE2 production in human A549 cancer cells not by inhibiting COX-2, but rather by suppressing the expression of microsomal prostaglandin E synthase (mPGES-1), the enzyme that directly synthesizes PGE2. We identified the Hypoxia Inducible Factor 1 alpha (HIF-1α) as the target of SFN-mediated mPGES-1 suppression. SFN suppressed HIF-1α protein expression and the presence of HIF-1α at the mPGES-1 promoter, resulting in reduced transcription of mPGES-1. Finally, SFN also reduced expression of mPGES-1 and PGE2 production in A549 xenograft tumors in mice. Together, these results point to the HIF-1α, mPGES-1 and PGE2 axis as a potential mediator of the anti-cancer effects of SFN, and illustrate the potential of SFN for therapeutic control of cancer and inflammation. Harmful side effects in patients taking agents that target the more upstream COX-2 enzyme render the downstream target mPGES-1 a significant target for anti-inflammatory therapy. Thus, SFN could prove to be an important therapeutic approach to both cancer and inflammation.

Concepts: Gene, Gene expression, Cancer, Oncology, Transcription, Enzyme, Cyclooxygenase, Prostaglandin


Since gastrointestinal mucosa is constantly exposed to reactive oxygen species from various sources, the presence of antioxidants may contribute to the body’s natural defenses against inflammatory diseases. HYPOTHESIS: To define the polyphenols extracted from dried apple peels (DAPP) and determine their antioxidant and anti-inflammatory potential in the intestine. Caco-2/15 cells were used to study the role of DAPP preventive actions against oxidative stress (OxS) and inflammation induced by iron-ascorbate (Fe/Asc) and lipopolysaccharide (LPS), respectively. RESULTS: The combination of HPLC with fluorescence detection, HPLC-ESI-MS TOF and UPLC-ESI-MS/MS QQQ allowed us to characterize the phenolic compounds present in the DAPP (phenolic acids, flavonol glycosides, flavan-3-ols, procyanidins). The addition of Fe/Asc to Caco-2/15 cells induced OxS as demonstrated by the rise in malondialdehyde, depletion of n-3 polyunsaturated fatty acids, and alterations in the activity of endogenous antioxidants (SOD, GPx, G-Red). However, preincubation with DAPP prevented Fe/Asc-mediated lipid peroxidation and counteracted LPS-mediated inflammation as evidenced by the down-regulation of cytokines (TNF-α and IL-6), and prostaglandin E2. The mechanisms of action triggered by DAPP induced also a down-regulation of cyclooxygenase-2 and nuclear factor-κB, respectively. These actions were accompanied by the induction of Nrf2 (orchestrating cellular antioxidant defenses and maintaining redox homeostasis), and PGC-1α (the “master controller” of mitochondrial biogenesis). CONCLUSION: Our findings provide evidence of the capacity of DAPP to reduce OxS and inflammation, two pivotal processes involved in inflammatory bowel diseases.

Concepts: Inflammation, Antioxidant, Oxidative stress, Oxidative phosphorylation, Reactive oxygen species, Superoxide dismutase, Quercetin, Prostaglandin


BACKGROUND & AIMS: The endocannabinoid and eicosanoid lipid signaling pathways have important roles in inflammatory syndromes. Monoacylglycerol lipase (MAGL) links these pathways, hydrolyzing the endocannabinoid 2-arachidonoylglycerol to generate the arachidonic acid precursor pool for prostaglandin production. We investigated whether blocking MAGL protects against inflammation and damage from hepatic ischemia/reperfusion (I/R) and other insults. METHODS: We analyzed the effects of hepatic I/R in mice given the selective MAGL inhibitor JZL184, in Mgll-/-mice, FAAH-/- mice, and in Cnr1(-/-)and Cnr2(-/-)mice, which have disruptions in the cannabinoid receptors 1 and 2 (CB(½)). Liver tissues were collected and analyzed, along with cultured hepatocytes and Kupffer cells. We measured endocannabinoids, eicosanoids, and markers of inflammation, oxidative stress, and cell death using molecular biology, biochemistry, and mass spectrometry analyses. RESULTS: Wild-type mice given JZL184 and Mgll-/- mice were protected from hepatic I/R injury by a mechanism that involved increased endocannabinoid signaling via CB(2) and reduced production of eicosanoids in the liver. JZL184 suppressed the inflammation and oxidative stress that mediate hepatic I/R injury. Hepatocytes were the major source of hepatic MAGL activity and endocannabinoid and eicosanoid production. JZL184 also protected from induction of liver injury by D-(+)-galactosamine and lipopolysaccharides or CCl(4). CONCLUSIONS: MAGL promotes hepatic injury via endocannabinoid and eicosanoid signaling; blockade of this pathway protects mice from liver injury. MAGL inhibitors might be developed to treat for conditions that expose the liver to oxidative stress and inflammatory damage.

Concepts: Inflammation, Liver, Lipid, Eicosanoid, Prostaglandin, Leukotriene, Arachidonic acid, Monoacylglycerol lipase


Within the secreted phospholipase A2 (sPLA2) family, group X sPLA2 (sPLA2-X) has the highest capacity to hydrolyze cellular membranes and has long been thought to promote inflammation by releasing arachidonic acid (AA), a precursor of pro-inflammatory eicosanoids. Unexpectedly, we found that transgenic mice globally overexpressing human sPLA2-X (PLA2G10-Tg) displayed striking immunosuppressive and lean phenotypes with lymphopenia and increased M2-like macrophages, accompanied by marked elevation of free ω-3 polyunsaturated fatty acids (PUFAs) and their metabolites. Studies using Pla2g10-deficient mice revealed that endogenous sPLA2-X, which is highly expressed in the colon epithelium and spermatozoa, mobilized ωPUFAs or their metabolites to protect against dextran sulfate-induced colitis and to promote fertilization, respectively. In colitis, sPLA2-X deficiency increased colorectal expression of Th17 cytokines, and ω3 PUFAs attenuated their production by lamina propria cells partly through the fatty acid receptor GPR120. In comparison, cytosolic phospholipase A2 (cPLA2α) protects from colitis by mobilizing ω-6 AA metabolites including prostaglandin E2. Thus, our results underscore a previously unrecognized role of sPLA2-X as an ω3 PUFA mobilizer in vivo, segregated mobilization of ω-3 and ω-6 PUFA metabolites by sPLA2-X and cPLA2α, respectively, in protection against colitis, and the novel role of a particular sPLA2-X-driven PUFA in fertilization.

Concepts: Nutrition, Fatty acid, Fatty acids, Essential fatty acid, Phospholipase A2, Omega-6 fatty acid, Prostaglandin, Arachidonic acid


Lipophosphoglycan (LPG) is a key virulence factor expressed on the surfaces of Leishmania promastigotes. Although LPG is known to activate macrophages, the underlying mechanisms resulting in the production of prostaglandin E2 (PGE2) via signaling pathways remain unknown. Here, the inflammatory response arising from stimulation by Leishmania infantum LPG and/or its lipid and glycan motifs was evaluated with regard to PGE2 induction. Intact LPG, but not its glycan and lipid moieties, induced a range of proinflammatory responses, including PGE2 and nitric oxide (NO) release, increased lipid droplet formation, and iNOS and COX2 expression. LPG also induced ERK-½ and JNK phosphorylation in macrophages, in addition to the release of PGE2, MCP-1, IL-6, TNF-α and IL-12p70, but not IL-10. Pharmacological inhibition of ERK1/2 and PKC affected PGE2 and cytokine production. Moreover, treatment with rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma (PPAR-γ), also modulated the release of PGE2 and other proinflammatory mediators. Finally, we determined that LPG-induced PPAR-γ signaling occurred via TLR1/2. Taken together, these results reinforce the role played by L. infantum-derived LPG in the proinflammatory response seen in Leishmania infection.

Concepts: Immune system, Inflammation, Signal transduction, Peroxisome proliferator-activated receptor, Leishmania, Fever, Eicosanoid, Prostaglandin


To date, most studies on the anti-inflammatory effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in humans have used a mixture of the 2 fatty acids in various forms and proportions.

Concepts: Fatty acid, Fatty acids, Omega-3 fatty acid, Anti-inflammatory, Carboxylic acid, Eicosapentaenoic acid, Docosahexaenoic acid, Prostaglandin


The hypothalamus of hypercaloric diet-induced obese animals is featured by a significant increase of microglial reactivity and its associated cytokine production. However, the role of dietary components, in particular fat and carbohydrate, with respect to the hypothalamic inflammatory response and the consequent impact on hypothalamic control of energy homeostasis is yet not clear.

Concepts: Inflammation, Hypothalamus, Metabolism, Nutrition, Glucose, Obesity, Fat, Prostaglandin


In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity.

Concepts: Nutrition, Fatty acid, Fatty acids, Essential fatty acid, Omega-3 fatty acid, Eicosapentaenoic acid, Omega-6 fatty acid, Prostaglandin


The incidence of age-related eye diseases is expected to rise with the aging of the population. Oxidation and inflammation are implicated in the etiology of these diseases. There is evidence that dietary antioxidants and anti-inflammatories may provide benefit in decreasing the risk of age-related eye disease. Nutrients of interest are vitamins C and E, β-carotene, zinc, lutein, zeaxanthin, and the omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid. While a recent survey finds that among the baby boomers (45-65 years old), vision is the most important of the five senses, well over half of those surveyed were not aware of the important nutrients that play a key role in eye health. This is evident from a national survey that finds that intake of these key nutrients from dietary sources is below the recommendations or guidelines. Therefore, it is important to educate this population and to create an awareness of the nutrients and foods of particular interest in the prevention of age-related eye disease.

Concepts: Nutrition, Fatty acid, Fatty acids, Essential fatty acid, Omega-3 fatty acid, Eicosapentaenoic acid, Docosahexaenoic acid, Prostaglandin