SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Propolis

32

Propolis is a natural honeybee hive product with the potential for use in the treatment of dermatological conditions, such as cutaneous abrasions, burns, and acne. In this study, we investigated whether propolis stimulates hair growth in mice. Ethanol-extracted propolis, which contains various physiologically active substances such as caffeic acid and kaempferol, stimulated anagen induction in the shaved back skin. Anagen induction occurred without any detectable abnormalities in the shape of the hair follicles (HFs), hair stem cells in the bulge, proliferating hair matrix keratinocytes in the hair bulb, or in the localization of versican in the dermal papilla. Propolis treatment also stimulated migration of hair matrix keratinocytes into the hair shaft in HFs during late anagen in the depilated back skin. Organotypic culture of skin containing anagen stage HFs revealed significant stimulation of hair matrix keratinocyte proliferation by propolis. Furthermore, propolis facilitated the proliferation of epidermal keratinocytes. These results indicate that propolis stimulates hair growth by inducing hair keratinocyte proliferation.

Concepts: Caffeic acid, Propolis, Facial hair, Sebaceous gland, Hair, Epidermis, Skin, Hair follicle

0

Benign prostate hypertrophy (BPH) is among the most common diseases with a huge impact on the quality of life of elderly men. There is a current need for the development of well-tolerated and effective preventive strategies to improve the clinical outcome. Caffeic acid phenethyl ester (CAPE) is an important active ingredient isolated from honey-bee propolis with potent anti-proliferative, anti-inflammatory and antioxidant effects. These properties promote CAPE as a promising candidate to be tested as an alternative therapy for BPH, which is still uninvestigated. Herein, we tested the ability of CAPE to guard against testosterone-induced BPH and investigated the involvement of IGF1-R/Akt/β-catenin signaling as a protective mechanism in testosterone-induced BPH rat model. Treatment with CAPE reduced testosterone-induced increase in the prostate index and histopathological alterations. In addition, co-treatment with CAPE significantly suppressed insulin-like growth factor-1 receptor (IGF-1R)/Akt/β-catenin/cyclinD1 axis as well as tumor necrosis factor-α level and nuclear factor (NF)-kB activity. Furthermore, the treatment with CAPE replenished the antioxidant defense systems, superoxide dismutase (SOD) and reduced glutathione (GSH) with subsequent reduction in prostate tissue lipid peroxides. This study highlights the potential merit of CAPE-enriched propolis formulations to protect elderly men against the development of BPH. © 2018 IUBMB Life, 2018.

Concepts: Paracetamol, Propolis, Superoxide, Glutathione, Caffeic acid, Superoxide dismutase, Reactive oxygen species, Antioxidant

0

Different products from a unique propolis extract obtained by using various solvents such as hydroalcoholic, glycolic (98% propylene glycol), and glyceric solutions, and oil, as well as in powder form, named ESIT12, were prepared. The molecular composition of the different preparations was evaluated and their antioxidant activity determined. All the preparations showed a quite similar polyphenol composition and comparable percentage even if ESIT12 was found to be richer in phenolic acids (caffeic, coumaric, ferulic, and isoferulic). Overall, flavones and flavonols ranged from ~20% up to ~36% in the glyceric extract, while flavanones and diidroflavonols were between ~28% and ~41%. Besides their quite similar composition, glycolic and hydroalcoholic extracts were found to be richer in the total polyphenols content. When the antioxidant properties were determined for the four preparations, the activity was similar among them, thus revealing that it is strictly related to the polyphenols content for propolis products whose composition is quite comparable. To date, very few data are available on propolis composition in glyceric and glycolic extracts and information has never been published on propolis in oil. This study could be of interest to the food and nutraceutical industries to choose suitable solvents and conditions to produce propolis preparations useful for active finished products.

Concepts: Catechin, Polyphenol, Phenols, Propylene glycol, Resveratrol, Propolis, Flavonoid, Antioxidant

0

Propolis, a resinous substance collected by honeybees by mixing their saliva with plant sources, including tree bark and leaves and then mixed with secreted beeswax, possesses a variety of bioactivities. Whereas caffeic acid phenethyl ester (CAPE) has been recognized as a major bioactive ingredient in New Zealand propolis, Brazilian green propolis, on the other hand, possesses artepillin C (ARC). In this study, we report that, similar to CAPE, ARC docks into and abrogates mortalin-p53 complexes, causing the activation of p53 and the growth arrest of cancer cells. Cell viability assays using ARC and green propolis-supercritical extract (GPSE) revealed higher cytotoxicity in the latter, supported by nuclear translocation and the activation of p53. Furthermore, in vivo tumor suppression assays using nude mice, we found that GPSE and its conjugate with γ cyclodextrin (γCD) possessed more potent anticancer activity than purified ARC. GPSE‑γCD may thus be recommended as a natural, effective and economic anticancer amalgam.

Concepts: Beeswax, Honey bee, Cell, DNA, Propolis, Caffeic acid, Oncology, Cancer

0

In this study, we aimed to investigate the neuroprotective effects of caffeic acid phenethyl ester (CAPE), an active component of propolis purified from honeybee hives, on photothrombotic cortical ischemic injury in mice. Permanent focal ischemia was achieved in the medial frontal and somatosensory cortices of anesthetized male C57BL/6 mice by irradiation of the skull with cold light laser in combination with systemic administration of rose bengal. The animals were treated with CAPE (0.5-5 mg/kg, i.p.) twice 1 and 6 h after ischemic insult. CAPE significantly reduced the infarct size as well as the expression of tumor necrosis factor-α, hypoxiainducible factor-1α, monocyte chemoattractant protein-1, interleukin-1α, and indoleamine 2,3-dioxygenase in the cerebral cortex ipsilateral to the photothrombosis. Moreover, it induced an increase in heme oxygenase-1 immunoreactivity and interleukin-10 expression. These results suggest that CAPE exerts a remarkable neuroprotective effect on ischemic brain injury via its anti-inflammatory properties, thereby providing a benefit to the therapy of cerebral infarction.

Concepts: Skull, Propolis, Caffeic acid, Traumatic brain injury, Stroke, Necrosis, Cerebral cortex, Ischemia

0

Cisplatin is a highly effective chemotherapeutic drug that is toxic to the peripheral nervous system. Findings suggest that axons are early targets of the neurotoxicity of cisplatin. Although many compounds have been reported as neuroprotective, there is no effective treatment against the neurotoxicity of cisplatin. Caffeic acid phenethyl ester (CAPE) is a propolis component with neuroprotective potential mainly attributed to antioxidant and anti-inflammatory mechanisms. We have recently demonstrated the neurotrophic potential of CAPE in a cellular model of neurotoxicity related to Parkinson’s disease. Now, we have assessed the neurotrophic and neuroprotective effects of CAPE against cisplatin-induced neurotoxicity in PC12 cells. CAPE (10 μM) attenuated the inhibition of neuritogenesis and the downregulation of markers of neuroplasticity (GAP-43, synapsin I, synaptophysin, and 200-kD neurofilament) induced by cisplatin (5 μM). This concentration of cisplatin does not affect cell viability, and it was used in order to assess the early neurotoxic events triggered by cisplatin. When a lethal dose of cisplatin was used (IC50 = 32 μM), CAPE (10 μM) increased cell viability. The neurotrophic effect of CAPE is not dependent on NGF nor is it additive to the effect of NGF, but it might involve the activation of the NGF-high-affinity receptors (trkA). The involvement of other neurotrophin receptors such as trkB and trkC is unlikely. This is the first study to demonstrate the protective potential of CAPE against the neurotoxicity of cisplatin and to suggest the involvement of trkA receptors in the neuroprotective mechanism of CAPE. Based on these findings, the beneficial effect of CAPE on cisplatin-induced peripheral neuropathy should be further investigated.

Concepts: Peripheral neuropathy, Propolis, Toxicity, Effect, DNA, Neurology, Caffeic acid, Nervous system

0

Myeloid differentiation protein 2 (MD2) is an essential molecule which recognizes lipopolysaccharide (LPS), leading to initiation of inflammation through the activation of Toll-like receptor 4 (TLR4) signaling. Caffeic acid phenethyl ester (CAPE) from propolis of honeybee hives could interfere interactions between LPS and the TLR4/MD2 complex, and thereby has promising anti-inflammatory properties. In this study, we designed and synthesized 48 CAPE derivatives and evaluated their anti-inflammatory activities in mouse primary peritoneal macrophages (MPMs) activated by LPS. The most active compound, 10s, was found to bind with MD2 with high affinity, which prevented formation of the LPS/MD2/TLR4 complex. The binding mode of 10s revealed that the major interactions with MD2 were established via two key hydrogen bonds and hydrophobic interactions. Furthermore, 10s showed remarkable protective effects against LPS-caused ALI (acute lung injury) in vivo. Taken together, this work provides new lead structures and candidates as MD2 inhibitors for the development of anti-inflammatory drugs.

Concepts: Oxygen, Lipopolysaccharide, Protein, Propolis, DNA, Anti-inflammatory, TLR 4, Caffeic acid

0

Propolis from apiculture is known for wide range of medicinal properties owing to its vast chemical constituents including polyphenols, flavonoids and anticancer agent Caffeic acid phenethyl ester (CAPE).

Concepts: Radiation therapy, Propolis, Caffeic acid

0

Use of natural agents is an upcoming area of research in cancer biology. Caffeic acid phenethyl ester has received great attention because of its therapeutic potential in various conditions including cancer. It is an active/abundant component of propolis. Propolis is a honey bee hive product produced by bees using their enzyme-rich digestive secretions on resinous mix, bee wax and pollen from plants. It is used to protect the beehive against bacteria and other infections.Although a lot of work has been done on chemotherapeutic aspects of CAPE, its role as a radiomodulator is yet to be delineated. It can act both as radioprotector and radiosensitizer. Depending on the tissue type it can modulate the radiation response by following different mechanisms. This review will focus on the differential radiomodulatory effects of Caffeic Acid Phenethyl Ester in normal and cancer cells.Besides chemistry and bioavailability,it’s potential as a therapeutic agent against radiation induced damage will also be discussed.

Concepts: Beehive, Beeswax, Honeycomb, Propolis, Honey bee, Caffeic acid, Honey, Beekeeping

0

3'-Hydroxypterostilbene (trans-3,5-dimethoxy-3',4'-hydroxystilbene) presents in Sphaerophysa salsula, Pterocarpus marsupium, and Honey Bee propolis and has been reported to exhibit several biological activities. Herein, we aimed to explore the chemopreventive effects of dietary 3'-hydroxypterostilbene and underlying molecular mechanisms on colitis-associated cancer using the azoxymethane (AOM)/dextran sodium sulfate (DSS) model. 3'-Hydroxypterostilbene administration effectively ameliorated the colon shortening and number of tumors in AOM/DSS-treated mice (3.2 ± 1.2 of the high dose treatment versus 13.8 ± 5.3 of the AOM/DSS group, p<0.05). Molecular analysis exhibited the anti-inflammatory activity of 3'-hydroxypterostilbene by a significant decrease in the levels of inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-6 (IL-6) (p<0.05). Moreover, dietary 3'-hydroxypterostilbene also significantly diminished IL-6/signal transducer and activator of transcription (STAT3) signaling and in restored colonic suppressor of cytokine signaling 3 (SOCS3) levels in the colonic tissue of mice (p<0.05). Collectively, these results demonstrated for the first time the in vivo chemopreventive efficacy and molecular mechanisms of dietary 3'-hydroxypterostilbene against colitis-associated colonic tumorigenesis.

Concepts: Cancer, Propolis, Beeswax, Vasodilation, Nitric oxide synthase, Beekeeping, Honey bee, Nitric oxide