Discover the most talked about and latest scientific content & concepts.

Concept: Projectile


The horrific loss of life at Sandy Hook Elementary School in Newtown, Connecticut, in December 2012 has prompted a national conversation about guns and mental illness in the United States.This tragedy occurred less than 6 months after 70 people were shot in a movie theater in Colorado and after highly publicized mass shootings in Arizona and at Virginia Tech. These four events share two common characteristics: all four shooters were apparently mentally ill, and all four used guns with large-capacity magazines, allowing them to fire multiple rounds of ammunition without reloading. As policymakers consider options to reduce gun violence, they . . .

Concepts: U.S. state, Mental disorder, Mental illness, Projectile, Firearm, Colorado, Weapon, Fairfield County, Connecticut


We have investigated how birds avoid mid-air collisions during head-on encounters. Trajectories of birds flying towards each other in a tunnel were recorded using high speed video cameras. Analysis and modelling of the data suggest two simple strategies for collision avoidance: (a) each bird veers to its right and (b) each bird changes its altitude relative to the other bird according to a preset preference. Both strategies suggest simple rules by which collisions can be avoided in head-on encounters by two agents, be they animals or machines. The findings are potentially applicable to the design of guidance algorithms for automated collision avoidance on aircraft.

Concepts: Animal, Bird, Introductory physics, Projectile, Camera, Parrot, Animals, Traffic Collision Avoidance System


Spheroids are ball-shaped stone objects found in African archaeological sites dating from 1.8 million years ago (Early Stone Age) to at least 70,000 years ago (Middle Stone Age). Spheroids are either fabricated or naturally shaped stones selected and transported to places of use making them one of the longest-used technologies on record. Most hypotheses about their use suggest they were percussive tools for shaping or grinding other materials. However, their size and spherical shape make them potentially useful as projectile weapons, a property that, uniquely, humans have been specialised to exploit for millions of years. Here we show (using simulations of projectile motions resulting from human throwing) that 81% of a sample of spheroids from the late Acheulean (Bed 3) at the Cave of Hearths, South Africa afford being thrown so as to inflict worthwhile damage to a medium-sized animal over distances up to 25 m. Most of the objects have weights that produce optimal levels of damage from throwing, rather than simply being as heavy as possible (as would suit other functions). Our results show that these objects were eminently suitable for throwing, and demonstrate how empirical research on behavioural tasks can inform and constrain our theories about prehistoric artefacts.

Concepts: Human, Africa, Projectile, Paleolithic, Stone Age, Archaeology, Ammunition, Prehistory



Projectile weapons (i.e. those delivered from a distance) enhanced prehistoric hunting efficiency by enabling higher impact delivery and hunting of a broader range of animals while reducing confrontations with dangerous prey species. Projectiles therefore provided a significant advantage over thrusting spears. Composite projectile technologies are considered indicative of complex behavior and pivotal to the successful spread of Homo sapiens. Direct evidence for such projectiles is thus far unknown from >80,000 years ago. Data from velocity-dependent microfracture features, diagnostic damage patterns, and artifact shape reported here indicate that pointed stone artifacts from Ethiopia were used as projectile weapons (in the form of hafted javelin tips) as early as >279,000 years ago. In combination with the existing archaeological, fossil and genetic evidence, these data isolate eastern Africa as a source of modern cultures and biology.

Concepts: Human, Africa, Projectile, Archaeology, Ammunition, Weapon, Missile, Arrow


Our visual system allows us to rapidly identify and intercept a moving object. When this object is far away, we base the trajectory on the target’s location relative to an external frame of reference [1]. This process forms the basis for the constant bearing angle (CBA) model, a reactive strategy that ensures interception since the bearing angle, formed between the line joining pursuer and target (called the range vector) and an external reference line, is held constant [2-4]. The CBA model may be a fundamental and widespread strategy, as it is also known to explain the interception trajectories of bats and fish [5, 6]. Here, we show that the aerial attack of the tiny robber fly Holcocephala fusca is consistent with the CBA model. In addition, Holcocephala fusca displays a novel proactive strategy, termed “lock-on” phase, embedded with the later part of the flight. We found the object detection threshold for this species to be 0.13°, enabled by an extremely specialized, forward pointing fovea (∼5 ommatidia wide, interommatidial angle Δφ = 0.28°, photoreceptor acceptance angle Δρ = 0.27°). This study furthers our understanding of the accurate performance that a miniature brain can achieve in highly demanding sensorimotor tasks and suggests the presence of equivalent mechanisms for target interception across a wide range of taxa.

Concepts: Photoreceptor cell, Force, Binary operation, Trajectory, Trajectory of a projectile, Range of a projectile, Projectile, Ballistics


This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h(-1). Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore, individual F. peregrinus were trained to dive in front of a vertical dam with a height of 60 m. The presence of a well-defined background allowed us to reconstruct the flight path and the body shape of the falcon during certain flight phases. Flight trajectories were obtained with a stereo high-speed camera system. In addition, body images of the falcon were taken from two perspectives with a high-resolution digital camera. The dam allowed us to match the high-resolution images obtained from the digital camera with the corresponding images taken with the high-speed cameras. Using these data we built a life-size model of F. peregrinus and used it to measure the drag and lift forces in a wind-tunnel. We compared these forces acting on the model with the data obtained from the 3-D flight path trajectory of the diving F. peregrinus. Visualizations of the flow in the wind-tunnel uncovered details of the flow structure around the falcon’s body, which suggests local regions with separation of flow. High-resolution pictures of the diving peregrine indicate that feathers pop-up in the equivalent regions, where flow separation in the model falcon occurred.

Concepts: Force, Falconry, Falcon, Trajectory, Projectile, Drag, Peregrine Falcon, Falconidae


Experimental data are shown for survival of fossilized diatoms undergoing shocks in the GPa range. The results were obtained from hypervelocity impact experiments which fired fossilized diatoms frozen in ice into water targets. After the shots, the material recovered from the target water was inspected for diatom fossils. Nine shots were carried out, at speeds from 0.388 to 5.34 km s(-1), corresponding to mean peak pressures of 0.2-19 GPa. In all cases, fragmented fossilized diatoms were recovered, but both the mean and the maximum fragment size decreased with increasing impact speed and hence peak pressure. Examples of intact diatoms were found after the impacts, even in some of the higher speed shots, but their frequency and size decreased significantly at the higher speeds. This is the first demonstration that fossils can survive and be transferred from projectile to target in hypervelocity impacts, implying that it is possible that, as suggested by other authors, terrestrial rocks ejected from the Earth by giant impacts from space, and which then strike the Moon, may successfully transfer terrestrial fossils to the Moon.

Concepts: Earth, Moon, Physical quantities, Pressure, Velocity, Projectile, Impact crater, Hypervelocity


When people are instructed to locate the vanishing location of a moving target, systematic errors forward in the direction of motion (M-displacement) and downward in the direction of gravity (O-displacement) are found. These phenomena came to be linked with the notion that physical invariants are embedded in the dynamic representations generated by the perceptual system. We explore the nature of these invariants that determine the representational mechanics of projectiles. By manipulating the retention intervals between the target’s disappearance and the participant’s responses, while measuring both M- and O-displacements, we were able to uncover a representational analogue of the trajectory of a projectile. The outcomes of three experiments revealed that the shape of this trajectory is discontinuous. Although the horizontal component of such trajectory can be accounted for by perceptual and oculomotor factors, its vertical component cannot. Taken together, the outcomes support an internalization of gravity in the visual representation of projectiles. (PsycINFO Database Record © 2013 APA, all rights reserved).

Concepts: Force, The Target, All rights reserved, Trajectory, Trajectory of a projectile, Range of a projectile, Projectile, Ballistics


BACKGROUND:Many scientific studies have shown that the mere presence of guns can increase aggression, an effect dubbed the “weapons effect.” The current research examines a potential source of the weapons effect: guns depicted in top-selling films.METHODS:Trained coders identified the presence of violence in each 5-minute film segment for one-half of the top 30 films since 1950 and the presence of guns in violent segments since 1985, the first full year the PG-13 rating (age 13+) was used. PG-13-rated films are among the top-selling films and are especially attractive to youth.RESULTS:Results found that violence in films has more than doubled since 1950, and gun violence in PG-13-rated films has more than tripled since 1985. When the PG-13 rating was introduced, these films contained about as much gun violence as G (general audiences) and PG (parental guidance suggested for young children) films. Since 2009, PG-13-rated films have contained as much or more violence as R-rated films (age 17+) films.CONCLUSIONS:Even if youth do not use guns, these findings suggest that they are exposed to increasing gun violence in top-selling films. By including guns in violent scenes, film producers may be strengthening the weapons effect and providing youth with scripts for using guns. These findings are concerning because many scientific studies have shown that violent films can increase aggression. Violent films are also now easily accessible to youth (eg, on the Internet and cable). This research suggests that the presence of weapons in films might amplify the effects of violent films on aggression.

Concepts: Aggression, Violence, Film, Projectile, Weapon, Gun, Motion Picture Association of America film rating system, Indiana Jones and the Temple of Doom