Discover the most talked about and latest scientific content & concepts.

Concept: Profilometer


This paper presents a fully differential single-axis accelerometer fabricated using the MetalMUMPs process. The unique structural configuration and common-centriod wiring of the metal electrodes enables a fully differential sensing scheme with robust metal sensing structures. CoventorWare is used in structural and electrical design and simulation of the fully differential accelerometer. The MUMPs foundry fabrication process of the sensor allows for high yield, good process consistency and provides 20 μm structural thickness of the sensing element, which makes the capacitive sensing eligible. In device characterization, surface profile of the fabricated device is measured using a Veeco surface profilometer; and mean and gradient residual stress in the nickel structure are calculated as approximately 94.7 MPa and -5.27 MPa/μm, respectively. Dynamic characterization of the sensor is performed using a vibration shaker with a high-end commercial calibrating accelerometer as reference. The sensitivity of the sensor is measured as 0.52 mV/g prior to off-chip amplification. Temperature dependence of the sensing capacitance is also characterized. A -0.021fF/°C is observed. The findings in the presented work will provide useful information for design of sensors and actuators such as accelerometers, gyroscopes and electrothermal actuators that are to be fabricated using MetalMUMPs technology.

Concepts: Structure, Microelectromechanical systems, Transducer, Accelerometer, Sensor, Sensors, Profilometer, Capacitive displacement sensor


Total ankle replacement (TAR) is an alternative to fusion, replacing the degenerated joint with a mechanical motion-preserving alternative. Minimal pre-clinical testing has been reported to date and existing wear testing standards lack definition. Ankle gait is complex, therefore the aim of this study was to investigate the effect on wear of a range of different ankle gait kinematic inputs. Five Zenith (Corin Group) TARs were tested in a modified knee simulator for twelve million cycles (Mc). Different combinations of IR rotation and AP displacement were applied every 2Mc to understand the effects of the individual kinematics. Wear was assessed gravimetrically every Mc and surface profilometry undertaken after each condition. With the initial unidirectional input with no AP displacement the wear rate measured 1.2±0.6mm(3)/Mc. The addition of 11° rotation and 9mm of AP displacement caused a statistically significant increase in the wear rate to 25.8±3.1mm(3)/Mc. These inputs seen a significant decrease in the surface roughness at the tibial articulation. Following polishing three displacement values were tested; 0, 4 and 9mm with no significant difference in wear rate ranging 11.8-15.2mm(3)/Mc. TAR wear rates were shown to be highly dependent on the addition of internal/external rotation within the gait profile with multidirectional kinematics proving vital in the accurate wear testing of TARs. Prior to surface polishing wear rates were significantly higher but once in a steady state the AP displacement had no significant effect on the wear.

Concepts: Statistical significance, Systems theory, Classical mechanics, Acceleration, Velocity, Roughness, Centripetal force, Profilometer


The effects of solution (sol) processed contacts of indium tin oxide (ITO-sol) and gold (Au-sol) on solar cells are tested. When combined with solution processed active layers of CdTe/CdSe, all-inorganic fully solution processed solar cells are produced on non-conductive glass substrates. Under AM 1.5G illumination, open circuit voltages (Voc), short circuit currents (Jsc) and efficiencies (η) of solar cells processed with evaporated Au and commercial ITO were found to be (Voc = 0.56 ± 0.04 V, Jsc = 17.2 ± 2.2 mA cm(-2), η = 3.8 ± 0.4%), with Au-sol replacement (Voc = 0.54 ± 0.03 V, Jsc = 12.6 ± 1.0 mA cm(-2), η = 2.0 ± 0.1%), with ITO-sol (Voc = 0.38 ± 0.04 V, Jsc = 12.3 ± 0.8 mA cm(-2), η = 1.3 ± 0.2%), and with each layer solution processed (Voc = 0.49 ± 0.01 V, Jsc = 10.0 ± 1.5 mA cm(-2), η = 1.5 ± 0.2%) with the champion fully-solution processed all-inorganic device showing η = 1.7%. Layers and devices were characterized with UV/Vis spectroscopy, optical profilometry, XRD, XPS and SEM. The results indicate that the reduced performance of the all-solution devices results primarily from increased roughness of the Au film and decreased conductivity of the ITO layer.

Concepts: Spectroscopy, Oxygen, Solar cell, Indium tin oxide, Liquid crystal display, Indium(III) oxide, Indium, Profilometer


To evaluate the presence and propagation of defects and their effects on surfaces of nickel-titanium (NiTi) instruments using noncontact, three-dimensional optical profilometry, and to assess the accuracy of this method of investigation.

Concepts: Scientific method, Java, Crystallographic defect, Profilometer


This paper describes a study of the quantify surface roughness of experimentally manufactured particleboards and sandwiched panels having fibers on the surface layers. Surface quality of specimens before and after being overlaid with thin melamine impregnated papers was determined by employing profilometer equipment. Roughness measurements and Janka hardness were carried out on the specimens conditioned at 60% and 95% relative humidity levels. Based on the findings in this work, surface roughness of the specimens that were exposed two relative humidity exposure showed significant differences from each others. Data determined in this study could be beneficial to understand behavior of such panels exposed different humidity levels.

Concepts: Humidity, Relative humidity, Paper, Psychrometrics, Roughness, Hygrometer, Tool, Profilometer


This study compared the biocompatibility, mechanical properties, and surface roughness of a pre-polymerized polymethyl methacrylate (PMMA) resin for CAD/CAM complete removable dental prostheses (CRDPs) and a traditional heat-polymerized PMMA resin. Two groups of resin substrates [Control (RC): conventional PMMA; Test (RA): CAD/CAM PMMA] were fabricated. Human primary osteoblasts and mouse embryonic-fibroblasts were cultured for biocompatibility assays. Mechanical properties and surface roughness were compared. ANOVA revealed no difference between the resin groups in the biocompatibility assays. RA demonstrated a higher elastic modulus (p=0.002), young’s modulus (p=0.002), plastic energy (p=0.002), ultimate strength (p=0.0004), yield point (p=0.016), strain at yield point (p=0.037), and toughness (p<0.0001); while RC displayed a higher elastic energy (p<0.0001). Laser profilometry concluded a rougher surface profile (p<0.0001) for RA. This study concluded that the tested CAD/CAM resin was equally biocompatible and presented with improved mechanical properties than the traditional heat-polymerized PMMA resin used in the fabrication of CRDPs.

Concepts: Tensile strength, Young's modulus, Elasticity, Solid mechanics, Elastic modulus, Hooke's law, Roughness, Profilometer


Titanium alloys are extensively applied in biomedical industries due to their excellent material properties. However, they are recognized as difficult to cut materials due to their low thermal conductivity, which induces a complexity to their deformation mechanisms and restricts precise productions. This paper presents a new observation about the removal regime of titanium alloys. The experimental results, including the chip formation, thrust force signal and surface profile, showed that there was a critical cutting distance to achieve better surface integrity of machined surface. The machined areas with better surface roughness were located before the clear transition point, defining as the ductile to brittle transition. The machined area at the brittle region displayed the fracture deformation which showed cracks on the surface edge. The relationship between depth of cut and the ductile to brittle transaction behavior of titanium alloys in ultra-precision machining(UPM) was also revealed in this study, it showed that the ductile to brittle transaction behavior of titanium alloys occurred mainly at relatively small depth of cut. The study firstly defines the ductile to brittle transition behavior of titanium alloys in UPM, contributing the information of ductile machining as an optimal machining condition for precise productions of titanium alloys.

Concepts: Materials science, Tensile strength, Silver, Thermal conductivity, Titanium, Roughness, Thrust, Profilometer


We present an experimental study of the variation of quality factor (Q-factor) of WGM resonators as a function of surface roughness. We consider mm-size whispering-gallery mode resonators manufactured with fluoride crystals, featuring Q-factors of the order of 1 billion at 1550 nm. The experimental procedure consists of repeated polishing steps, after which the surface roughness is evaluated using profilometry by white-light phase-shifting interferometry, while the Q-factors are determined using the cavity-ring-down method. This protocol permits us to establish an explicit curve linking the Q-factor of the disk-resonator to the surface roughness of the rim. We have performed measurements with four different crystals, namely, magnesium, calcium, strontium, and lithium fluoride. We have thereby found that the variations of Q-factor as a function of surface roughness is universal, in the sense that it is globally independent of the bulk material under consideration. We also discuss our experimental results in the light of theoretical estimates of surface scattering Q-factors already published in the literature.

Concepts: Crystal, Materials science, Object-oriented programming, Resonance, Method, Roughness, Crystal oscillator, Profilometer


To evaluate the surface roughness of 4 different bulk-fill resin-based composites cured using different irradiance levels. Methods: This in vitro study was performed in February 2017 to August 2017 at the College of Dentistry, King Saud University. Twenty-four specimens were prepared from each of the bulk-fill materials [Tetric N-Ceram (TNC), SonicFill (SF), Smart Dentin Replacement (SDR), and Filtek Bulk-Fill (FB)] using a brass metal mold, resulting in a total of 96 specimens, cured using a Bluephase N light curing unit. Half of the total number of specimens (N=48) were cured using high-power irradiance (1200 mW/cm2) for 20 seconds, while the remaining half (N=48) were cured using low power irradiance (650 mW/cm2) for 40 seconds. After 24 hours, baseline surface roughness of each specimen was analyzed using a profilometer, then polished using Sof-lex abrasive disks, and the surface roughness of all groups was assessed. Results: Post-polished SonicFill cured at high irradiance had the highest mean surface roughness (0.23±0.03), whereas pre-polished Smart Dentin Replacement (0.11±0.01) and SonicFill (0.11±0.02) cured at low irradiance had the lowest mean surface roughness. Conclusion: High curing irradiance (1,200 mW/cm2) had no positive influence on the surface roughness of Filtek Bulk Fill and Tetric N-Ceram bulk-fill RBCs compared with lower curing irradiance (650 mW/cm2). However, the difference of curing irradiance significantly affected the surface roughness in SDR and sonic fill RBCs.

Concepts: Saudi Arabia, In vitro, Materials science, Composite material, Roughness, Specimen, Dental composite, Profilometer