SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Probiotic

169

BACKGROUND: Activation of the A2A adenosine receptor (A2AAR) decreases production of inflammatory cytokines, prevents C. difficile toxin A-induced enteritis and, in combination with antibiotics, increases survival from sepsis in mice. We investigated whether A2AAR activation improves and A2AAR deletion worsens outcomes in a murine model of C. difficile (strain VPI10463) infection (CDI). METHODS: C57BL/6 mice were pretreated with an antibiotic cocktail prior to infection and then treated with vancomycin with or without an A2AAR agonist. A2AAR-/- and littermate wild-type (WT) mice were similarly infected, and IFNgamma and TNFalpha were measured at peak of and recovery from infection. RESULTS: Infected, untreated mice rapidly lost weight, developed diarrhea, and had mortality rates of 50-60%. Infected mice treated with vancomycin had less weight loss and diarrhea during antibiotic treatment but mortality increased to near 100% after discontinuation of antibiotics. Infected mice treated with both vancomycin and an A2AAR agonist, either ATL370 or ATL1222, had minimal weight loss and better long-term survival than mice treated with vancomycin alone. A2AAR KO mice were more susceptible than WT mice to death from CDI. Increases in cecal IFNgamma and blood TNFalpha were pronounced in the absence of A2AARs. CONCLUSION: In a murine model of CDI, vancomycin treatment resulted in reduced weight loss and diarrhea during acute infection, but high recurrence and late-onset death, with overall mortality being worse than untreated infected controls. The administration of vancomycin plus an A2AAR agonist reduced inflammation and improved survival rates, suggesting a possible benefit of A2AAR agonists in the management of CDI to prevent recurrent disease.

Concepts: Infection, Antibiotic resistance, Vancomycin, Antibiotic, Metronidazole, Probiotic, Adenosine receptor, Clostridium difficile

166

BACKGROUND: This study was conducted to evaluate the faecal occurrence and characterization of Clostridium difficile in clinically healthy dogs (N¿=¿50) and in dogs with diarrhea (N¿=¿20) in the Stockholm-Uppsala region of Sweden. FINDINGS: Clostridium difficile was isolated from 2/50 healthy dogs and from 2/20 diarrheic dogs. Isolates from healthy dogs were negative for toxin A and B and for the tcdA and tcdB genes. Both isolates from diarrheic dogs were positive for toxin B and for the tcdA and tcdB genes. The C. difficile isolates from healthy dogs had PCR ribotype 009 (SE-type 6) and 010 (SE-type 3) whereas both isolates from dogs with diarrhoea had the toxigenic ribotype 014 (SE-type 21). One of the isolates from healthy dogs was initially resistant to metronidazole. CONCLUSIONS: This study revealed presence of toxigenic C. difficile in faecal samples of diarrheic dogs and low number of non- toxigenic isolates in healthy dogs from Uppsala-Stockholm region in Sweden. However, more comprehensive studies are warranted to investigate the role of C. difficile in gastrointestinal disease in dogs.

Concepts: Gut flora, Antibiotic resistance, Saccharomyces boulardii, Metronidazole, Feces, Probiotic, Clostridium difficile, Diarrhea

158

Worldwide there is increasing interest in the manipulation of human gut microbiota by the use of probiotic supplements to modify or prevent a range of communicable and non-communicable diseases. Probiotic interventions administered during pregnancy and breastfeeding offer a unique opportunity to influence a range of important maternal and infant outcomes. The aim of the Probiotics in Pregnancy Study (PiP Study) is to assess if supplementation by the probiotic Lactobacillus rhamnosus HN001 administered to women from early pregnancy and while breastfeeding can reduce the rates of infant eczema and atopic sensitisation at 1 year, and maternal gestational diabetes mellitus, bacterial vaginosis and Group B Streptococcal vaginal colonisation before birth, and depression and anxiety postpartum.

Concepts: Pregnancy, Childbirth, Gut flora, Diabetes mellitus, Gestational diabetes, Probiotic, Lactobacillus, Lactobacillus rhamnosus

155

There is now compelling evidence for a link between enteric microbiota and brain function. The ingestion of probiotics modulates the processing of information that is strongly linked to anxiety and depression, and influences the neuroendocrine stress response. We have recently demonstrated that prebiotics (soluble fibres that augment the growth of indigenous microbiota) have significant neurobiological effects in rats, but their action in humans has not been reported.

Concepts: Anxiety, Psychology, Hypothalamus, Digestive system, Probiotic, Emotion, Dietary fiber, Prebiotic

138

The small intestine plays an essential role in the health and well-being of animals. Previous studies have shown that Lactobacillus has a protective effect on intestinal morphology, intestinal epithelium integrity and appropriate maturation of gut-associated tissues. Here, gene expression in jejunum tissue of weaned piglets was investigated by RNA-seq analysis after administration of sterile saline, Lactobacillus reuteri, or an antibiotic (chlortetracycline). In total, 401 and 293 genes were significantly regulated by chlortetracycline and L. reuteri, respectively, compared with control treatment. Notably, the HP, NOX1 and GPX2 genes were significantly up-regulated in the L. reuteri group compared with control, which is related to the antioxidant ability of this strain. In addition, the expression of genes related to arachidonic acid metabolism and linoleic acid metabolism enriched after treatment with L. reuteri. The fatty acid composition in the jejunum and colon was examined by GC-MS analysis and suggested that the MUFA C18:1n9c, and PUFAs C18:2n6c and C20:4n6 were increased in the L. reuteri group, verifying the GO enrichment and KEGG pathway analyses of the RNA-seq results. The results contribute to our understanding of the probiotic activity of this strain and its application in pig production.

Concepts: Gene expression, Bacteria, Fatty acid, Probiotic, Omega-6 fatty acid, Linoleic acid, Arachidonic acid, Essential fatty acid interactions

96

Background Clostridium difficile is the most common cause of infectious diarrhea in hospitalized patients. Recurrences are common after antibiotic therapy. Actoxumab and bezlotoxumab are human monoclonal antibodies against C. difficile toxins A and B, respectively. Methods We conducted two double-blind, randomized, placebo-controlled, phase 3 trials, MODIFY I and MODIFY II, involving 2655 adults receiving oral standard-of-care antibiotics for primary or recurrent C. difficile infection. Participants received an infusion of bezlotoxumab (10 mg per kilogram of body weight), actoxumab plus bezlotoxumab (10 mg per kilogram each), or placebo; actoxumab alone (10 mg per kilogram) was given in MODIFY I but discontinued after a planned interim analysis. The primary end point was recurrent infection (new episode after initial clinical cure) within 12 weeks after infusion in the modified intention-to-treat population. Results In both trials, the rate of recurrent C. difficile infection was significantly lower with bezlotoxumab alone than with placebo (MODIFY I: 17% [67 of 386] vs. 28% [109 of 395]; adjusted difference, -10.1 percentage points; 95% confidence interval [CI], -15.9 to -4.3; P<0.001; MODIFY II: 16% [62 of 395] vs. 26% [97 of 378]; adjusted difference, -9.9 percentage points; 95% CI, -15.5 to -4.3; P<0.001) and was significantly lower with actoxumab plus bezlotoxumab than with placebo (MODIFY I: 16% [61 of 383] vs. 28% [109 of 395]; adjusted difference, -11.6 percentage points; 95% CI, -17.4 to -5.9; P<0.001; MODIFY II: 15% [58 of 390] vs. 26% [97 of 378]; adjusted difference, -10.7 percentage points; 95% CI, -16.4 to -5.1; P<0.001). In prespecified subgroup analyses (combined data set), rates of recurrent infection were lower in both groups that received bezlotoxumab than in the placebo group in subpopulations at high risk for recurrent infection or for an adverse outcome. The rates of initial clinical cure were 80% with bezlotoxumab alone, 73% with actoxumab plus bezlotoxumab, and 80% with placebo; the rates of sustained cure (initial clinical cure without recurrent infection in 12 weeks) were 64%, 58%, and 54%, respectively. The rates of adverse events were similar among these groups; the most common events were diarrhea and nausea. Conclusions Among participants receiving antibiotic treatment for primary or recurrent C. difficile infection, bezlotoxumab was associated with a substantially lower rate of recurrent infection than placebo and had a safety profile similar to that of placebo. The addition of actoxumab did not improve efficacy. (Funded by Merck; MODIFY I and MODIFY II ClinicalTrials.gov numbers, NCT01241552 and NCT01513239 .).

Concepts: Clinical trial, Infection, Antibiotic resistance, Placebo, Antibiotic, Probiotic, Clostridium difficile, Hebrew numerals

85

It might be possible to manipulate the intestinal microbiota with prebiotics or other agents to prevent or treat obesity. However, little is known about the ability of prebiotics to specifically modify gut microbiota in children with overweight/obesity or reduce body weight. We performed a randomized controlled trial to study the effects of prebiotics on body composition, markers of inflammation, bile acids in fecal samples, and composition of the intestinal microbiota in children with overweight or obesity.

Concepts: Gut flora, Nutrition, Obesity, Digestive system, Bile, Feces, Dieting, Probiotic

68

Psychobiotics were previously defined as live bacteria (probiotics) which, when ingested, confer mental health benefits through interactions with commensal gut bacteria. We expand this definition to encompass prebiotics, which enhance the growth of beneficial gut bacteria. We review probiotic and prebiotic effects on emotional, cognitive, systemic, and neural variables relevant to health and disease. We discuss gut-brain signalling mechanisms enabling psychobiotic effects, such as metabolite production. Overall, knowledge of how the microbiome responds to exogenous influence remains limited. We tabulate several important research questions and issues, exploration of which will generate both mechanistic insights and facilitate future psychobiotic development. We suggest the definition of psychobiotics be expanded beyond probiotics and prebiotics to include other means of influencing the microbiome.

Concepts: Psychology, Gut flora, Digestive system, Escherichia coli, Probiotic, Lactobacillus, Bacteriology, Prebiotic

60

Manipulating gut bacteria in the microbiome, through the use of probiotics and prebiotics, has been found to have an influence on both physical and emotional wellbeing. This study uses a dietary manipulation ‘The Gut Makeover’ designed to elicit positive changes to the gut bacteria within the microbiome. 21 healthy participants undertook ‘The Gut Makeover’ for a four week period. Weight and various aspects of health were assessed pre and post intervention using the Functional Medicine Medical Symptoms Questionnaire (MSQ). Paired sample t-tests revealed a significant reduction in self-reported weight at the end of the intervention. Adverse medical symptoms related to digestion, cognition and physical and emotional wellbeing, were also significantly reduced during the course of the dietary intervention. The intervention, designed to manipulate gut bacteria, had a significant impact on digestion, reducing IBS type symptoms in this non-clinical population. There was also a striking reduction in negative symptoms related to cognition, memory and emotional wellbeing, including symptoms of anxiety and depression. Dietary gut microbiome manipulations may have the power to exert positive physical and psychological health benefits, of a similar nature to those reported in studies using pre and probiotics. The small sample size and lack of control over confounding variables means that it will be important to replicate these findings in larger-scale controlled, prospective, clinical trials. This dietary microbiome intervention has the potential to improve physical and emotional wellbeing in the general population but also to be investigated as a treatment option for individuals with conditions as diverse as IBS, anxiety, depression and Alzheimer’s disease.

Concepts: Alzheimer's disease, Psychology, Gut flora, Nutrition, Sample size, Redox, Digestive system, Probiotic

58

Over the last 10-15 years, our understanding of the composition and functions of the human gut microbiota has increased exponentially. To a large extent, this has been due to new ‘omic’ technologies that have facilitated large-scale analysis of the genetic and metabolic profile of this microbial community, revealing it to be comparable in influence to a new organ in the body and offering the possibility of a new route for therapeutic intervention. Moreover, it might be more accurate to think of it like an immune system: a collection of cells that work in unison with the host and that can promote health but sometimes initiate disease. This review gives an update on the current knowledge in the area of gut disorders, in particular metabolic syndrome and obesity-related disease, liver disease, IBD and colorectal cancer. The potential of manipulating the gut microbiota in these disorders is assessed, with an examination of the latest and most relevant evidence relating to antibiotics, probiotics, prebiotics, polyphenols and faecal microbiota transplantation.

Concepts: Medicine, Cancer, Bacteria, Gut flora, Nutrition, Microbiology, Digestive system, Probiotic