Discover the most talked about and latest scientific content & concepts.

Concept: Presenilin


Galactic Cosmic Radiation consisting of high-energy, high-charged (HZE) particles poses a significant threat to future astronauts in deep space. Aside from cancer, concerns have been raised about late degenerative risks, including effects on the brain. In this study we examined the effects of (56)Fe particle irradiation in an APP/PS1 mouse model of Alzheimer’s disease (AD). We demonstrated 6 months after exposure to 10 and 100 cGy (56)Fe radiation at 1 GeV/µ, that APP/PS1 mice show decreased cognitive abilities measured by contextual fear conditioning and novel object recognition tests. Furthermore, in male mice we saw acceleration of Aβ plaque pathology using Congo red and 6E10 staining, which was further confirmed by ELISA measures of Aβ isoforms. Increases were not due to higher levels of amyloid precursor protein (APP) or increased cleavage as measured by levels of the β C-terminal fragment of APP. Additionally, we saw no change in microglial activation levels judging by CD68 and Iba-1 immunoreactivities in and around Aβ plaques or insulin degrading enzyme, which has been shown to degrade Aβ. However, immunohistochemical analysis of ICAM-1 showed evidence of endothelial activation after 100 cGy irradiation in male mice, suggesting possible alterations in Aβ trafficking through the blood brain barrier as a possible cause of plaque increase. Overall, our results show for the first time that HZE particle radiation can increase Aβ plaque pathology in an APP/PS1 mouse model of AD.

Concepts: Alzheimer's disease, Electron, Psychology, Cancer, Brain, Cognition, Immunohistochemistry, Presenilin


Presenilins (PSs) are the catalytic core of gamma-secretase complex. However, the mechanism of FAD-associated PS mutations in AD pathogenesis still remains elusive. Here we review the general biology and mechanism of gamma-secretase and focus on the catalytic components – presenilins and their biological functions and contributions to the AD pathogenesis. The functions of presenilins are divided into gamma-secretase dependent and gamma-secretase independent ones. The gamma-secretase dependent functions of presenilins are exemplified by the sequential cleavages in the processing of APP and Notch; the gamma-secretase independent functions of presenilins include stabilizing beta-catenin in Wnt signaling pathway, regulating calcium homeostasis and their interaction with synaptic transmission.

Concepts: Alzheimer's disease, DNA, Biology, Organism, Physiology, Amyloid precursor protein, Presenilin, Real analysis


Understanding of trafficking, processing, and degradation mechanisms of amyloid precursor protein (APP) is important because APP can be processed to produce β-amyloid (Aβ), a key pathogenic molecule in Alzheimer’s disease (AD). Here, we found that APP contains KFERQ motif at its C-terminus, a consensus sequence for chaperone-mediated autophagy (CMA) or microautophagy which are another types of autophagy for degradation of pathogenic molecules in neurodegenerative diseases. Deletion of KFERQ in APP increased C-terminal fragments (CTFs) and secreted N-terminal fragments of APP and kept it away from lysosomes. KFERQ deletion did not abolish the interaction of APP or its cleaved products with heat shock cognate protein 70 (Hsc70), a protein necessary for CMA or microautophagy. These findings suggest that KFERQ motif is important for normal processing and degradation of APP to preclude the accumulation of APP-CTFs although it may not be important for CMA or microautophagy.

Concepts: Alzheimer's disease, DNA, Protein, Neurology, Neurodegenerative disorders, C-terminus, N-terminus, Presenilin


β-Secretase 1 (BACE1) is a key enzyme in Alzheimer’s disease pathogenesis that catalyses the amyloidogenic cleavage of amyloid precursor protein (APP). Recently, global Bace1 deletion was shown to protect against diet-induced obesity and diabetes, suggesting that BACE1 is a potential regulator of glucose homeostasis. Here, we investigated whether increased neuronal BACE1 is sufficient to alter systemic glucose metabolism, using a neuron-specific human BACE1 knockin mouse model (PLB4).

Concepts: Alzheimer's disease, Metabolism, Nutrition, Insulin, Glucose, Blood sugar, Amyloid precursor protein, Presenilin


In the present study, we tested whether the volatile metabolome was altered by mutations of the Alzheimer’s disease (AD)-implicated amyloid precursor protein gene (APP) and comprehensively examined urinary volatiles that may potentially serve as candidate biomarkers of AD. Establishing additional biomarkers in screening populations for AD will provide enhanced diagnostic specificity and will be critical in evaluating disease-modifying therapies. Having strong evidence of gross changes in the volatile metabolome of one line of APP mice, we utilized three unique mouse lines which over-express human mutations of the APP gene and their respective non-transgenic litter-mates (NTg). Head-space gas chromatography/mass spectrometry (GC/MS) of urinary volatiles uncovered several aberrant chromatographic peak responses. We later employed linear discrimination analysis and found that the GC/MS peak responses provide accurate (>84%) genotype classification of urinary samples. These initial data in animal models show that mutant APP gene expression entails a uniquely identifiable urinary odor, which if uncovered in clinical AD populations, may serve as an additional biomarker for the disease.

Concepts: Alzheimer's disease, DNA, Gene, Genetics, Cancer, Evolution, Amyloid precursor protein, Presenilin


Alzheimer’s disease (AD) is characterized by accumulation of the β-amyloid peptide (Aβ), which is generated through sequential proteolysis of the amyloid precursor protein (APP), first by the action of β-secretase, generating the β-C-terminal fragment (βCTF), and then by the Presenilin 1 (PS1) enzyme in the γ-secretase complex, generating Aβ. γ-Secretase is an intramembranous protein complex composed of Aph1, Pen2, Nicastrin, and Presenilin 1. Although it has a central role in the pathogenesis of AD, knowledge of the mechanisms that regulate PS1 function is limited. Here, we show that phosphorylation of PS1 at Ser367 does not affect γ-secretase activity, but has a dramatic effect on Aβ levels in vivo. We identified CK1γ2 as the endogenous kinase responsible for the phosphorylation of PS1 at Ser367. Inhibition of CK1γ leads to a decrease in PS1 Ser367 phosphorylation and an increase in Aβ levels in cultured cells. Transgenic mice in which Ser367 of PS1 was mutated to Ala, show dramatic increases in Aβ peptide and in βCTF levels in vivo. Finally, we show that this mutation impairs the autophagic degradation of βCTF, resulting in its accumulation and increased levels of Aβ peptide and plaque load in the brain. Our results demonstrate that PS1 regulates Aβ levels by a unique bifunctional mechanism. In addition to its known role as the catalytic subunit of the γ-secretase complex, selective phosphorylation of PS1 on Ser367 also decreases Aβ levels by increasing βCTF degradation through autophagy. Elucidation of the mechanism by which PS1 regulates βCTF degradation may aid in the development of potential therapies for Alzheimer’s disease.

Concepts: Alzheimer's disease, Protein, Signal transduction, Enzyme, Peptide, Beta amyloid, Amyloid precursor protein, Presenilin


β-Amyloid (Aβ) peptides are thought to be critically involved in the etiology of Alzheimer’s disease (AD). The aspartyl protease β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is required for the production of Aβ, and BACE1 inhibition is thus an attractive target for the treatment of AD. We show that verubecestat (MK-8931) is a potent, selective, structurally unique BACE1 inhibitor that reduced plasma, cerebrospinal fluid (CSF), and brain concentrations of Aβ40, Aβ42, and sAPPβ (a direct product of BACE1 enzymatic activity) after acute and chronic administration to rats and monkeys. Chronic treatment of rats and monkeys with verubecestat achieved exposures >40-fold higher than those being tested in clinical trials in AD patients yet did not elicit many of the adverse effects previously attributed to BACE inhibition, such as reduced nerve myelination, neurodegeneration, altered glucose homeostasis, or hepatotoxicity. Fur hypopigmentation was observed in rabbits and mice but not in monkeys. Single and multiple doses were generally well tolerated and produced reductions in Aβ40, Aβ42, and sAPPβ in the CSF of both healthy human subjects and AD patients. The human data were fit to an amyloid pathway model that provided insight into the Aβ pools affected by BACE1 inhibition and guided the choice of doses for subsequent clinical trials.

Concepts: Alzheimer's disease, Clinical trial, Enzyme, Neurology, Cerebrospinal fluid, Amyloid precursor protein, Enzymes, Presenilin


Alzheimer’s disease is a multifactorial dementia disorder characterized by early amyloid-β, tau deposition, glial activation and neurodegeneration, where the interrelationships between the different pathophysiological events are not yet well characterized. In this study, longitudinal multitracer positron emission tomography imaging of individuals with autosomal dominant or sporadic Alzheimer’s disease was used to quantify the changes in regional distribution of brain astrocytosis (tracer (11)C-deuterium-L-deprenyl), fibrillar amyloid-β plaque deposition ((11)C-Pittsburgh compound B), and glucose metabolism ((18)F-fluorodeoxyglucose) from early presymptomatic stages over an extended period to clinical symptoms. The 52 baseline participants comprised autosomal dominant Alzheimer’s disease mutation carriers (n = 11; 49.6 ± 10.3 years old) and non-carriers (n = 16; 51.1 ± 14.2 years old; 10 male), and patients with sporadic mild cognitive impairment (n = 17; 61.9 ± 6.4 years old; nine male) and sporadic Alzheimer’s disease (n = 8; 63.0 ± 6.5 years old; five male); for confidentiality reasons, the gender of mutation carriers is not revealed. The autosomal dominant Alzheimer’s disease participants belonged to families with known mutations in either presenilin 1 (PSEN1) or amyloid precursor protein (APPswe or APParc) genes. Sporadic mild cognitive impairment patients were further divided into (11)C-Pittsburgh compound B-positive (n = 13; 62.0 ± 6.4; seven male) and (11)C-Pittsburgh compound B-negative (n = 4; 61.8 ± 7.5 years old; two male) groups using a neocortical standardized uptake value ratio cut-off value of 1.41, which was calculated with respect to the cerebellar grey matter. All baseline participants underwent multitracer positron emission tomography scans, cerebrospinal fluid biomarker analysis and neuropsychological assessment. Twenty-six of the participants underwent clinical and imaging follow-up examinations after 2.8 ± 0.6 years. By using linear mixed-effects models, fibrillar amyloid-β plaque deposition was first observed in the striatum of presymptomatic autosomal dominant Alzheimer’s disease carriers from 17 years before expected symptom onset; at about the same time, astrocytosis was significantly elevated and then steadily declined. Diverging from the astrocytosis pattern, amyloid-β plaque deposition increased with disease progression. Glucose metabolism steadily declined from 10 years after initial amyloid-β plaque deposition. Patients with sporadic mild cognitive impairment who were (11)C-Pittsburgh compound B-positive at baseline showed increasing amyloid-β plaque deposition and decreasing glucose metabolism but, in contrast to autosomal dominant Alzheimer’s disease carriers, there was no significant longitudinal decline in astrocytosis over time. The prominent initially high and then declining astrocytosis in autosomal dominant Alzheimer’s disease carriers, contrasting with the increasing amyloid-β plaque load during disease progression, suggests astrocyte activation is implicated in the early stages of Alzheimer’s disease pathology.

Concepts: Alzheimer's disease, Positron emission tomography, Positron, Symptom, Beta amyloid, Amyloid precursor protein, Mild cognitive impairment, Presenilin


The β-site amyloid precursor protein (APP)-cleaving enzyme 1 (β-secretase, BACE1) initiates amyloidogenic processing of APP to generate amyloid β (Aβ), which is a hallmark of Alzheimer disease (AD) pathology. Cerebral levels of BACE1 are elevated in individuals with AD, but the molecular mechanisms are not completely understood. We demonstrate that GTPase Rheb (ras homolog enriched in brain), which induces mammalian target of rapamycin (mTOR) activity, is a physiological regulator of BACE1 stability and activity. Rheb overexpression depletes BACE1 protein levels and reduces Aβ productions, whereas the RNAi-knockdown of endogenous Rheb promotes BACE1 accumulation, and this effect by Rheb is independent of its mTOR signaling. Moreover, GTP bound Rheb interacts with BACE1 and degrades it through proteasomal and lysosomal pathways. Finally, we demonstrate that Rheb levels are downregulated in the AD brain, which is consistent with an increased BACE1 expression. All together our study defines Rheb as a novel physiological regulator of BACE1 levels and Aβ generation, and the Rheb-BACE1 circuitry may have a role in brain biology and disease.

Concepts: Alzheimer's disease, Cell, Molecular biology, Signal transduction, Beta amyloid, Amyloid precursor protein, Mammalian target of rapamycin, Presenilin


Several fragment-based methods have been applied to the discovery of new lead sources for inhibitors of BACE1, an important therapeutic target for Alzheimer’s disease. Among the most common fragment hits were various amidine-containing molecules in which the amidine engaged in discrete H-bond donor-acceptor interaction with the BACE1 catalytic dyad. Structure and medicinal chemistry knowledge-based optimization with emphasis on ligand efficiency resulted in identification of a key pharmacophore comprising a non-planar cyclic amidine scaffold directly attached to a phenyl group projecting into S1. This key pharmacophore is a common feature of known clinical candidates and has dominated the recent patent literature. A structural comparison of the non-planar cyclic amidine motif with other BACE1 pharmacophores highlights its uniqueness and distinct advantages.

Concepts: Alzheimer's disease, Pharmacology, Medicine, Clinical trial, Medicinal chemistry, Amyloid precursor protein, Presenilin, Pharmacophore