Discover the most talked about and latest scientific content & concepts.

Concept: Premotor cortex


Modern medicine has generally viewed the concept of “psychosomatic” disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness.

Concepts: Neuroanatomy, Brain, Cerebral cortex, Cerebrum, Limbic system, Frontal lobe, Premotor cortex, Brodmann area 24


Upon his death in 1955, Albert Einstein’s brain was removed, fixed and photographed from multiple angles. It was then sectioned into 240 blocks, and histological slides were prepared. At the time, a roadmap was drawn that illustrates the location within the brain of each block and its associated slides. Here we describe the external gross neuroanatomy of Einstein’s entire cerebral cortex from 14 recently discovered photographs, most of which were taken from unconventional angles. Two of the photographs reveal sulcal patterns of the medial surfaces of the hemispheres, and another shows the neuroanatomy of the right (exposed) insula. Most of Einstein’s sulci are identified, and sulcal patterns in various parts of the brain are compared with those of 85 human brains that have been described in the literature. To the extent currently possible, unusual features of Einstein’s brain are tentatively interpreted in light of what is known about the evolution of higher cognitive processes in humans. As an aid to future investigators, these (and other) features are correlated with blocks on the roadmap (and therefore histological slides). Einstein’s brain has an extraordinary prefrontal cortex, which may have contributed to the neurological substrates for some of his remarkable cognitive abilities. The primary somatosensory and motor cortices near the regions that typically represent face and tongue are greatly expanded in the left hemisphere. Einstein’s parietal lobes are also unusual and may have provided some of the neurological underpinnings for his visuospatial and mathematical skills, as others have hypothesized. Einstein’s brain has typical frontal and occipital shape asymmetries (petalias) and grossly asymmetrical inferior and superior parietal lobules. Contrary to the literature, Einstein’s brain is not spherical, does not lack parietal opercula and has non-confluent Sylvian and inferior postcentral sulci.

Concepts: Brain, Human brain, Cognition, Cerebral cortex, Cerebrum, Frontal lobe, Premotor cortex, Albert Einstein


Does silently talking to yourself in the third-person constitute a relatively effortless form of self control? We hypothesized that it does under the premise that third-person self-talk leads people to think about the self similar to how they think about others, which provides them with the psychological distance needed to facilitate self control. We tested this prediction by asking participants to reflect on feelings elicited by viewing aversive images (Study 1) and recalling negative autobiographical memories (Study 2) using either “I” or their name while measuring neural activity via ERPs (Study 1) and fMRI (Study 2). Study 1 demonstrated that third-person self-talk reduced an ERP marker of self-referential emotional reactivity (i.e., late positive potential) within the first second of viewing aversive images without enhancing an ERP marker of cognitive control (i.e., stimulus preceding negativity). Conceptually replicating these results, Study 2 demonstrated that third-person self-talk was linked with reduced levels of activation in an a priori defined fMRI marker of self-referential processing (i.e., medial prefrontal cortex) when participants reflected on negative memories without eliciting increased levels of activity in a priori defined fMRI markers of cognitive control. Together, these results suggest that third-person self-talk may constitute a relatively effortless form of self-control.

Concepts: Psychology, Brain, Cognitive science, Limbic system, Frontal lobe, Emotion, Premotor cortex, Prefrontal cortex


More than 5 million deaths a year are attributable to tobacco smoking, but attempts to help people either quit or reduce their smoking often fail, perhaps in part because the intention to quit activates brain networks related to craving. We recruited participants interested in general stress reduction and randomly assigned them to meditation training or a relaxation training control. Among smokers, 2 wk of meditation training (5 h in total) produced a significant reduction in smoking of 60%; no reduction was found in the relaxation control. Resting-state brain scans showed increased activity for the meditation group in the anterior cingulate and prefrontal cortex, brain areas related to self-control. These results suggest that brief meditation training improves self-control capacity and reduces smoking.

Concepts: Brain, Tobacco smoking, Cerebrum, Limbic system, Relaxation technique, Premotor cortex, Chronic stress, Stress management


We tested the hypothesis that epigenetic mechanisms in the brain and the immune system are associated with chronic pain. Genome-wide DNA methylation assessed in 9 months post nerve-injury (SNI) and Sham rats, in the prefrontal cortex (PFC) as well as in T cells revealed a vast difference in the DNA methylation landscape in the brain between the groups and a remarkable overlap (72%) between differentially methylated probes in T cells and prefrontal cortex. DNA methylation states in the PFC showed robust correlation with pain score of animals in several genes involved in pain. Finally, only 11 differentially methylated probes in T cells were sufficient to distinguish SNI or Sham individual rats. This study supports the plausibility of DNA methylation involvement in chronic pain and demonstrates the potential feasibility of DNA methylation markers in T cells as noninvasive biomarkers of chronic pain susceptibility.

Concepts: Immune system, DNA, Brain, Histone, Epigenetics, Organism, DNA methylation, Premotor cortex


Following brain lesions, previously normal patients sometimes exhibit criminal behavior. Although rare, these cases can lend unique insight into the neurobiological substrate of criminality. Here we present a systematic mapping of lesions with known temporal association to criminal behavior, identifying 17 lesion cases. The lesion sites were spatially heterogeneous, including the medial prefrontal cortex, orbitofrontal cortex, and different locations within the bilateral temporal lobes. No single brain region was damaged in all cases. Because lesion-induced symptoms can come from sites connected to the lesion location and not just the lesion location itself, we also identified brain regions functionally connected to each lesion location. This technique, termed lesion network mapping, has recently identified regions involved in symptom generation across a variety of lesion-induced disorders. All lesions were functionally connected to the same network of brain regions. This criminality-associated connectivity pattern was unique compared with lesions causing four other neuropsychiatric syndromes. This network includes regions involved in morality, value-based decision making, and theory of mind, but not regions involved in cognitive control or empathy. Finally, we replicated our results in a separate cohort of 23 cases in which a temporal relationship between brain lesions and criminal behavior was implied but not definitive. Our results suggest that lesions in criminals occur in different brain locations but localize to a unique resting state network, providing insight into the neurobiology of criminal behavior.

Concepts: Neuroanatomy, Brain, Cerebral cortex, Cerebrum, Limbic system, Crime, Frontal lobe, Premotor cortex


Our body feels like it is ours. However, individuals with body integrity identity disorder (BIID) lack this feeling of ownership for distinct limbs and desire amputation of perfectly healthy body parts. This extremely rare condition provides us with an opportunity to study the neural basis underlying the feeling of limb ownership, since these individuals have a feeling of disownership for a limb in the absence of apparent brain damage. Here we directly compared brain activation between limbs that do and do not feel as part of the body using functional MRI during separate tactile stimulation and motor execution experiments. In comparison to matched controls, individuals with BIID showed heightened responsivity of a large somatosensory network including the parietal cortex and right insula during tactile stimulation, regardless of whether the stimulated leg felt owned or alienated. Importantly, activity in the ventral premotor cortex depended on the feeling of ownership and was reduced during stimulation of the alienated compared to the owned leg. In contrast, no significant differences between groups were observed during the performance of motor actions. These results suggest that altered somatosensory processing in the premotor cortex is associated with the feeling of disownership in BIID, which may be related to altered integration of somatosensory and proprioceptive information.

Concepts: Brain, Cerebral cortex, Cerebrum, Sense, Somatosensory system, Premotor cortex, Proprioception, Ventral spinocerebellar tract


Mu suppression has been proposed as a signature of the activity of the human mirror neuron system (MNS). However the mu frequency band (8-13 Hz) overlaps with the alpha frequency band, which is sensitive to attentional fluctuation, and thus mu suppression could potentially be confounded by changes in attentional engagement. The specific baseline against which mu suppression is assessed may be crucial, yet there is little consistency in how this is defined. We examined mu suppression in 61 typical adults, the largest mu suppression study so far conducted. We compared different methods of baselining, and examined activity at central and occipital electrodes, to both biological (hands) and non-biological (kaleidoscope) moving stimuli, to investigate the involvement of attention and alpha activity in mu suppression. We also examined changes in beta power, another candidate index of MNS engagement. We observed strong mu suppression restricted to central electrodes when participants performed hand movements, demonstrating that mu is indeed responsive to the activity of the motor cortex. However, when we looked for a similar signature of mu suppression to passively observed stimuli, the baselining method proved to be crucial. Selective suppression for biological versus non-biological stimuli was seen at central electrodes only when we used a within-trial baseline based on a static stimulus: this method greatly reduced trial-by-trial variation in the suppression measure compared with baselines based on blank trials presented in separate blocks. Even in this optimal condition, 16-21% of participants showed no mu suppression. Changes in beta power also did not match our predicted pattern for MNS engagement, and did not seem to offer a better measure than mu. Our conclusions are in contrast to those of a recent meta-analysis, which concluded that mu suppression is a valid means to examine mirror neuron activity. We argue that mu suppression can be used to index the human MNS, but the effect is weak and unreliable and easily confounded with alpha suppression.

Concepts: Empathy, Premotor cortex, Mirror neuron


Recent social neuroscientific evidence indicates that implicit and explicit inferences on the mind of another person (i.e., intentions, attributions or traits), are subserved by a shared mentalizing network. Under both implicit and explicit instructions, ERP studies reveal that early inferences occur at about the same time, and fMRI studies demonstrate an overlap in core mentalizing areas, including the temporo-parietal junction (TPJ) and the medial prefrontal cortex (mPFC). These results suggest a rapid shared implicit intuition followed by a slower explicit verification processes (as revealed by additional brain activation during explicit vs. implicit inferences). These data provide support for a default-adjustment dual-process framework of social mentalizing.

Concepts: Brain, Neuroscience, Cognitive science, Cerebrum, Limbic system, Frontal lobe, Premotor cortex, Prefrontal cortex


Stories can elicit powerful emotions. A key emotional response to narrative plots (e.g., novels, movies, etc.) is suspense. Suspense appears to build on basic aspects of human cognition such as processes of expectation, anticipation, and prediction. However, the neural processes underlying emotional experiences of suspense have not been previously investigated. We acquired functional magnetic resonance imaging (fMRI) data while participants read a suspenseful literary text (E.T.A. Hoffmann’s “The Sandman”) subdivided into short text passages. Individual ratings of experienced suspense obtained after each text passage were found to be related to activation in the medial frontal cortex, bilateral frontal regions (along the inferior frontal sulcus), lateral premotor cortex, as well as posterior temporal and temporo-parietal areas. The results indicate that the emotional experience of suspense depends on brain areas associated with social cognition and predictive inference.

Concepts: Psychology, Brain, Magnetic resonance imaging, Cerebral cortex, Cerebrum, Emotion, Premotor cortex, Prefrontal cortex