SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Prediction

346

There is a general consensus among Earth scientists that melting of land ice greatly contributes to sea-level rise (SLR) and that future warming will exacerbate the risks posed to human civilization. As land ice is lost to the oceans, both the Earth’s gravitational and rotational potentials are perturbed, resulting in strong spatial patterns in SLR, termed sea-level fingerprints. We lack robust forecasting models for future ice changes, which diminishes our ability to use these fingerprints to accurately predict local sea-level (LSL) changes. We exploit an advanced mathematical property of adjoint systems and determine the exact gradient of sea-level fingerprints with respect to local variations in the ice thickness of all of the world’s ice drainage systems. By exhaustively mapping these fingerprint gradients, we form a new diagnosis tool, henceforth referred to as gradient fingerprint mapping (GFM), that readily allows for improved assessments of future coastal inundation or emergence. We demonstrate that for Antarctica and Greenland, changes in the predictions of inundation at major port cities depend on the location of the drainage system. For example, in London, GFM shows LSL that is significantly affected by changes on the western part of the Greenland Ice Sheet (GrIS), whereas in New York, LSL change predictions are greatly sensitive to changes in the northeastern portions of the GrIS. We apply GFM to 293 major port cities to allow coastal planners to readily calculate LSL change as more reliable predictions of cryospheric mass changes become available.

Concepts: Water, Gradient, Ice sheet, Greenland ice sheet, Oceanography, Prediction, Atlantic Ocean, Forecasting

310

How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications.

Concepts: Scientific method, Prediction, Futurology, Future, Sociology, Forecasting, Memetics, Meme

300

The last few decades have utterly transformed genetics and genomics, but what might the next ten years bring? PLOS Biology asked eight leaders spanning a range of related areas to give us their predictions. Without exception, the predictions are for more data on a massive scale and of more diverse types. All are optimistic and predict enormous positive impact on scientific understanding, while a recurring theme is the benefit of such data for the transformation and personalization of medicine. Several also point out that the biggest changes will very likely be those that we don’t foresee, even now.

Concepts: Scientific method, Gene, Genetics, Evolution, Biology, Prediction

262

Secondary use of electronic health records (EHRs) promises to advance clinical research and better inform clinical decision making. Challenges in summarizing and representing patient data prevent widespread practice of predictive modeling using EHRs. Here we present a novel unsupervised deep feature learning method to derive a general-purpose patient representation from EHR data that facilitates clinical predictive modeling. In particular, a three-layer stack of denoising autoencoders was used to capture hierarchical regularities and dependencies in the aggregated EHRs of about 700,000 patients from the Mount Sinai data warehouse. The result is a representation we name “deep patient”. We evaluated this representation as broadly predictive of health states by assessing the probability of patients to develop various diseases. We performed evaluation using 76,214 test patients comprising 78 diseases from diverse clinical domains and temporal windows. Our results significantly outperformed those achieved using representations based on raw EHR data and alternative feature learning strategies. Prediction performance for severe diabetes, schizophrenia, and various cancers were among the top performing. These findings indicate that deep learning applied to EHRs can derive patient representations that offer improved clinical predictions, and could provide a machine learning framework for augmenting clinical decision systems.

Concepts: Scientific method, Medicine, Prediction, Futurology, Future, Prophecy, Electronic health record, Forecasting

232

Standard theories of decision-making involving delayed outcomes predict that people should defer a punishment, whilst advancing a reward. In some cases, such as pain, people seem to prefer to expedite punishment, implying that its anticipation carries a cost, often conceptualized as ‘dread’. Despite empirical support for the existence of dread, whether and how it depends on prospective delay is unknown. Furthermore, it is unclear whether dread represents a stable component of value, or is modulated by biases such as framing effects. Here, we examine choices made between different numbers of painful shocks to be delivered faithfully at different time points up to 15 minutes in the future, as well as choices between hypothetical painful dental appointments at time points of up to approximately eight months in the future, to test alternative models for how future pain is disvalued. We show that future pain initially becomes increasingly aversive with increasing delay, but does so at a decreasing rate. This is consistent with a value model in which moment-by-moment dread increases up to the time of expected pain, such that dread becomes equivalent to the discounted expectation of pain. For a minority of individuals pain has maximum negative value at intermediate delay, suggesting that the dread function may itself be prospectively discounted in time. Framing an outcome as relief reduces the overall preference to expedite pain, which can be parameterized by reducing the rate of the dread-discounting function. Our data support an account of disvaluation for primary punishments such as pain, which differs fundamentally from existing models applied to financial punishments, in which dread exerts a powerful but time-dependent influence over choice.

Concepts: Time, Scientific method, Prediction, Future, Sociology, Choice, Preference, Suffering

226

Use of socially generated “big data” to access information about collective states of the minds in human societies has become a new paradigm in the emerging field of computational social science. A natural application of this would be the prediction of the society’s reaction to a new product in the sense of popularity and adoption rate. However, bridging the gap between “real time monitoring” and “early predicting” remains a big challenge. Here we report on an endeavor to build a minimalistic predictive model for the financial success of movies based on collective activity data of online users. We show that the popularity of a movie can be predicted much before its release by measuring and analyzing the activity level of editors and viewers of the corresponding entry to the movie in Wikipedia, the well-known online encyclopedia.

Concepts: Scientific method, Prediction, Futurology, Future, Sociology, Science, Society

215

Precision medicine approaches rely on obtaining precise knowledge of the true state of health of an individual patient, which results from a combination of their genetic risks and environmental exposures. This approach is currently limited by the lack of effective and efficient non-invasive medical tests to define the full range of phenotypic variation associated with individual health. Such knowledge is critical for improved early intervention, for better treatment decisions, and for ameliorating the steadily worsening epidemic of chronic disease. We present proof-of-concept experiments to demonstrate how routinely acquired cross-sectional CT imaging may be used to predict patient longevity as a proxy for overall individual health and disease status using computer image analysis techniques. Despite the limitations of a modest dataset and the use of off-the-shelf machine learning methods, our results are comparable to previous ‘manual’ clinical methods for longevity prediction. This work demonstrates that radiomics techniques can be used to extract biomarkers relevant to one of the most widely used outcomes in epidemiological and clinical research - mortality, and that deep learning with convolutional neural networks can be usefully applied to radiomics research. Computer image analysis applied to routinely collected medical images offers substantial potential to enhance precision medicine initiatives.

Concepts: Scientific method, Medicine, Epidemiology, Disease, Infectious disease, Prediction, Learning, Computer vision

203

We are learning how to watch the news through tears. All those children, and the adults protecting them. With an assault rifle. Up close. The survivors, eyes averted, are led to safety in daisy chains. Ambulances rush to the scene, but nearly all return empty. Loved ones go home empty, too. We pore over the details, searching for the clues that will bring order to chaos and help us predict and prevent the next one. But these catastrophes are all different. We have found to our dismay that prediction is somewhere between difficult and impossible. Tailored interventions, designed for specific . . .

Concepts: Prediction, Eye, Rifle, Machine gun, Carbine, Caseless ammunition, Semi-automatic rifle, The Next One

196

Why do certain group members end up liking each other more than others? How does affective reciprocity arise in human groups? The prediction of interpersonal sentiment has been a long-standing pursuit in the social sciences. We combined fMRI and longitudinal social network data to test whether newly acquainted group members' reward-related neural responses to images of one another’s faces predict their future interpersonal sentiment, even many months later. Specifically, we analyze associations between relationship-specific valuation activity and relationship-specific future liking. We found that one’s own future (T2) liking of a particular group member is predicted jointly by actor’s initial (T1) neural valuation of partner and by that partner’s initial (T1) neural valuation of actor. These actor and partner effects exhibited equivalent predictive strength and were robust when statistically controlling for each other, both individuals' initial liking, and other potential drivers of liking. Behavioral findings indicated that liking was initially unreciprocated at T1 yet became strongly reciprocated by T2. The emergence of affective reciprocity was partly explained by the reciprocal pathways linking dyad members' T1 neural data both to their own and to each other’s T2 liking outcomes. These findings elucidate interpersonal brain mechanisms that define how we ultimately end up liking particular interaction partners, how group members' initially idiosyncratic sentiments become reciprocated, and more broadly, how dyads evolve. This study advances a flexible framework for researching the neural foundations of interpersonal sentiments and social relations that-conceptually, methodologically, and statistically-emphasizes group members' neural interdependence.

Concepts: Scientific method, Psychology, Prediction, Futurology, Future, Prophecy, Sociology, Reciprocal

196

Individuals with music training in early childhood show enhanced processing of musical sounds, an effect that generalizes to speech processing. However, the conclusions drawn from previous studies are limited due to the possible confounds of predisposition and other factors affecting musicians and nonmusicians. We used a randomized design to test the effects of a laboratory-controlled music intervention on young infants' neural processing of music and speech. Nine-month-old infants were randomly assigned to music (intervention) or play (control) activities for 12 sessions. The intervention targeted temporal structure learning using triple meter in music (e.g., waltz), which is difficult for infants, and it incorporated key characteristics of typical infant music classes to maximize learning (e.g., multimodal, social, and repetitive experiences). Controls had similar multimodal, social, repetitive play, but without music. Upon completion, infants' neural processing of temporal structure was tested in both music (tones in triple meter) and speech (foreign syllable structure). Infants' neural processing was quantified by the mismatch response (MMR) measured with a traditional oddball paradigm using magnetoencephalography (MEG). The intervention group exhibited significantly larger MMRs in response to music temporal structure violations in both auditory and prefrontal cortical regions. Identical results were obtained for temporal structure changes in speech. The intervention thus enhanced temporal structure processing not only in music, but also in speech, at 9 mo of age. We argue that the intervention enhanced infants' ability to extract temporal structure information and to predict future events in time, a skill affecting both music and speech processing.

Concepts: Effect, Prediction, Cerebral cortex, Music