Discover the most talked about and latest scientific content & concepts.

Concept: Predatory fish


The behavioral strategies developed by predators to capture and kill their prey are fascinating, notably for predators that forage for prey at, or beyond, the boundaries of their ecosystem. We report here the occurrence of a beaching behavior used by an alien and large-bodied freshwater predatory fish (Silurus glanis) to capture birds on land (i.e. pigeons, Columbia livia). Among a total of 45 beaching behaviors observed and filmed, 28% were successful in bird capture. Stable isotope analyses (δ(13)C and δ(15)N) of predators and their putative prey revealed a highly variable dietary contribution of land birds among individuals. Since this extreme behavior has not been reported in the native range of the species, our results suggest that some individuals in introduced predator populations may adapt their behavior to forage on novel prey in new environments, leading to behavioral and trophic specialization to actively cross the water-land interface.

Concepts: Predation, Ecology, Behavior, Hunting, Apex predator, Mobbing behavior, Predatory fish


The natural, prehuman abundance of most large predators is unknown because of the lack of historical data and a limited understanding of the natural factors that control their populations. Determining the supportable predator biomass at a given location (that is, the predator carrying capacity) would help managers to optimize protection and would provide site-specific recovery goals. We assess the relationship between predatory reef fish biomass and several anthropogenic and environmental variables at 39 reefs across the Caribbean to (i) estimate their roles determining local predator biomass and (ii) determine site-specific recovery potential if fishing was eliminated. We show that predatory reef fish biomass tends to be higher in marine reserves but is strongly negatively related to human activities, especially coastal development. However, human activities and natural factors, including reef complexity and prey abundance, explain more than 50% of the spatial variation in predator biomass. Comparing site-specific predator carrying capacities to field observations, we infer that current predatory reef fish biomass is 60 to 90% lower than the potential supportable biomass in most sites, even within most marine reserves. We also found that the scope for recovery varies among reefs by at least an order of magnitude. This suggests that we could underestimate unfished biomass at sites that provide ideal conditions for predators or greatly overestimate that of seemingly predator-depleted sites that may have never supported large predator populations because of suboptimal environmental conditions.

Concepts: Predation, Ecology, Coral reef, Hunting, Carrying capacity, Zooplankton, Starfish, Predatory fish


Predators play an extremely important role in natural communities. In freshwater systems, fish can dominate sorting both at the colonization and post-colonization stage. Specifically, for many colonizing species, fish can have non-lethal, direct effects that exceed the lethal direct effects of predation. Functionally diverse fish species with a range of predatory capabilities have previously been observed to elicit functionally equivalent responses on oviposition in tree frogs. We tested this hypothesis of functional equivalence of non-lethal effects for four predatory fish species, using naturally colonizing populations of aquatic beetles. Among taxa other than mosquitoes, and with the exception of the chemically camouflaged pirate perch, Aphredoderus sayanus, we provide the first evidence of variation in colonization or oviposition responses to different fish species. Focusing on total abundance, Fundulus chrysotus, a gape-limited, surface-feeding fish, elicited unique responses among colonizing Hydrophilidae, with the exception of the smallest and most abundant taxa, Paracymus, while Dytiscidae responded similarly to all avoided fish. Neither family responded to A. sayanus. Analysis of species richness and multivariate characterization of the beetle assemblages for the four fish species and controls revealed additional variation among the three avoided species and confirmed that chemical camouflage in A. sayanus results in assemblages essentially identical to fishless controls. The origin of this variation in beetle responses to different fish is unknown, but may involve variation in cue sensitivity, different behavioral algorithms, or differential responses to species-specific fish cues. The identity of fish species occupying aquatic habitats is crucial to understanding community structure, as varying strengths of lethal and non-lethal effects, as well as their interaction, create complex landscapes of predator effects and challenge the notion of functional equivalence.

Concepts: Fish, Predation, Crypsis, Beetle, Hunting, Frog, Predatory fish, Aphredoderidae


Billfishes are considered to be among the fastest swimmers in the oceans. Previous studies have estimated maximum speed of sailfish and black marlin at around 35 m s(-1) but theoretical work on cavitation predicts that such extreme speed is unlikely. Here we investigated maximum speed of sailfish, and three other large marine pelagic predatory fish species, by measuring the twitch contraction time of anaerobic swimming muscle. The highest estimated maximum swimming speeds were found in sailfish (8.3±1.4 m s(-1)), followed by barracuda (6.2±1.0 m s(-1)), little tunny (5.6±0.2 m s(-1)) and dorado (4.0±0.9 m s(-1)), although size-corrected performance was highest in little tunny and lowest in sailfish. Contrary to previously reported estimates, our results suggest that sailfish are incapable of exceeding swimming speeds of 10-15 m s(-1), which corresponds to the speed at which cavitation are predicted to occur, with destructive consequences for fin tissues.

Concepts: Fish, Oceanography, Muscle contraction, Ocean, Speed, Swimming, Predatory fish, Istiophoridae


Movement in animal groups is highly varied and ranges from seemingly disordered motion in swarms to coordinated aligned motion in flocks and schools. These social interactions are often thought to reduce risk from predators, despite a lack of direct evidence. We investigated risk-related selection for collective motion by allowing real predators (bluegill sunfish) to hunt mobile virtual prey. By fusing simulated and real animal behavior, we isolated predator effects while controlling for confounding factors. Prey with a tendency to be attracted toward, and to align direction of travel with, near neighbors tended to form mobile coordinated groups and were rarely attacked. These results demonstrate that collective motion could evolve as a response to predation, without prey being able to detect and respond to predators.

Concepts: Predation, Ecology, Hunting, Starfish, Predatory fish


The risk of predation can have large effects on ecological communities via changes in prey behaviour, morphology and reproduction. Although prey can use a variety of sensory signals to detect predation risk, relatively little is known regarding the effects of predator acoustic cues on prey foraging behaviour. Here we show that an ecologically important marine crab species can detect sound across a range of frequencies, probably in response to particle acceleration. Further, crabs suppress their resource consumption in the presence of experimental acoustic stimuli from multiple predatory fish species, and the sign and strength of this response is similar to that elicited by water-borne chemical cues. When acoustic and chemical cues were combined, consumption differed from expectations based on independent cue effects, suggesting redundancies among cue types. These results highlight that predator acoustic cues may influence prey behaviour across a range of vertebrate and invertebrate taxa, with the potential for cascading effects on resource abundance.

Concepts: Predation, Ecology, Optimal foraging theory, Zooplankton, Predatory fish


Predator-prey interactions are vital to the stability of many ecosystems. Yet, few studies have considered how they are mediated due to substantial challenges in quantifying behavior over appropriate temporal and spatial scales. Here, we employ high-resolution sonar imaging to track the motion and interactions among predatory fish and their schooling prey in a natural environment. In particular, we address the relationship between predator attack behavior and the capacity for prey to respond both directly and through collective propagation of changes in velocity by group members. To do so, we investigated a large number of attacks and estimated per capita risk during attack and its relation to the size, shape, and internal structure of prey groups. Predators were found to frequently form coordinated hunting groups, with up to five individuals attacking in line formation. Attacks were associated with increased fragmentation and irregularities in the spatial structure of prey groups, features that inhibit collective information transfer among prey. Prey group fragmentation, likely facilitated by predator line formation, increased (estimated) per capita risk of prey, provided prey schools were maintained below a threshold size of approximately 2 m(2). Our results highlight the importance of collective behavior to the strategies employed by both predators and prey under conditions of considerable informational constraints.

Concepts: Predation, Ecology, Lotka–Volterra equation, Lion, Hunting, Dog, Biological interaction, Predatory fish


Due to their potential for affecting the modulation of behaviour, effects of selective serotonin reuptake inhibitors (SSRIs) in the environment are particularly interesting regarding interspecies interactions and non-consumptive effects (NCEs) induced by predator cues in prey organisms. We evaluated the effects of sertraline (0.4, 40 ng/L, 40 µg/L) over 8 days on activity and habitat choice in the freshwater snail Radix balthica, on snails' boldness in response to mechanical stimulation (simulating predator attack), and their activity/habitat choice in response to chemical cues from predatory fish. We hypothesised that sertraline exposure would detrimentally impact NCEs elicited by predator cues, increasing predation risk. Although there were no effects of sertraline on NCEs, there were observed effects of chemical cue from predatory fish on snail behaviour independent of sertraline exposure. Snails reduced their activity in which the percentage of active snails decreased by almost 50% after exposure to fish cue. Additionally, snails changed their habitat use by moving away from open (exposed) areas. The general lack of effects of sertraline on snails' activity and other behaviours in this study is interesting considering that other SSRIs have been shown to induce changes in gastropod behaviour. This raises questions on the modes of action of various SSRIs in gastropods, as well as the potential for a trophic “mismatch” of effects between fish predators and snail prey in aquatic systems.

Concepts: Predation, Ecology, Serotonin, Selective serotonin reuptake inhibitor, Apex predator, Snail, Predatory fish, Gastropods


Mercury (Hg) concentrations and nitrogen (δ(15)N) and carbon (δ(13)C) stable isotopic ratios were measured to assess differences in Hg bioaccumulation in four predatory fish species (Mycteroperca microlepis, Lutjanus campechanus, Caulolatilus microps, and Serioli dumerili) of high commercial and recreational importance in Atlantic waters of the southeastern US. Positive relationships existed between Hg and length, weight, and age, for all species, strongest for M. microlepis and L. campechanus. Intraspecific Hg concentrations also strongly correlated with δ(15)N for all species, and δ(13)C for only L. campechanus, and S. dumerili. Comparisons of stable isotopes between species and their impact on mean Hg concentration were inconclusive. This study is the first to report Hg concentrations for C. microps. The current study provides data for an under-sampled region, explores how feeding ecology impacts Hg uptake in commonly co-occurring fishes, and raises questions of the importance of sex and reproduction in Hg accumulation for marine fishes.

Concepts: Life, Fish, Predation, Electrochemistry, Concentration, Gulf of Mexico, Predatory fish, Amberjack


Predation is one of the key factors governing patterns in natural systems, and adjustments of prey behaviors in response to a predator stimulus can have important ecological implications for wild fish. To investigate the effects of predators on the behavior of prey fish and to test whether the possible effects varied with predator size, black carp (Mylopharyngodon piceus) and snakehead (Channa argus) (a size-matched predator treatment with a similar body size to prey fish and a larger predator treatment with approximately 2.7 times of the body mass of prey fish) were selected to function as prey and predator, respectively. Their spontaneous activities were videorecorded in a central circular arena surrounded by a ring holding the stimulus fish. The distance between prey and predator fish was approximately 200% of the distance between two prey fish, which suggested that black carp can distinguish their conspecifics from heterospecifics and probably recognize the snakehead as a potential predator. The prey fish spent substantially less time moving and exhibited an overall shorter total distance of movement after the size-matched or large predator was introduced, which possibly occurred due to increased vigilance or efforts to reduce the possibility of detection by potential predators. However, there was no significant difference in either distance or spontaneous activities between two predator treatments. These findings suggested that (1) an anti-predator strategy in black carp might involve maintaining a safe distance, decreasing activity and possibly increased vigilance and that (2) the behaviors of prey response to predators were not influenced by their relative size difference.

Concepts: Fish, Predation, Ecology, Carp, Cyprinidae, Zooplankton, Predatory fish, Black carp