SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Power

178

Intracellular concentrations of adenosine-5'-triphosphate (ATP) are many times greater than extracellular concentrations (1-10 mM versus 10-100 nM, respectively) and cellular release of ATP is tightly controlled. Transient rises in extracellular ATP and its metabolite adenosine have important signaling roles; and acting through purinergic receptors, can increase blood flow and oxygenation of tissues; and act as neurotransmitters. Increased blood flow not only increases substrate availability but may also aid in recovery through removal of metabolic waste products allowing muscles to accomplish more work with less fatigue. The objective of the present study was to determine if supplemental ATP would improve muscle torque, power, work, or fatigue during repeated bouts of high intensity resistance exercise.

Concepts: Metabolism, Energy, Muscle, Tissues, Lactic acid, Exercise physiology, Power, Waste

168

It is generally accepted that crew rowing requires perfect synchronization between the movements of the rowers. However, a long-standing and somewhat counterintuitive idea is that out-of-phase crew rowing might have benefits over in-phase (i.e., synchronous) rowing. In synchronous rowing, 5 to 6% of the power produced by the rower(s) is lost to velocity fluctuations of the shell within each rowing cycle. Theoretically, a possible way for crews to increase average boat velocity is to reduce these fluctuations by rowing in antiphase coordination, a strategy in which rowers perfectly alternate their movements. On the other hand, the framework of coordination dynamics explicates that antiphase coordination is less stable than in-phase coordination, which may impede performance gains. Therefore, we compared antiphase to in-phase crew rowing performance in an ergometer experiment. Nine pairs of rowers performed a two-minute maximum effort in-phase and antiphase trial at 36 strokes min(-1) on two coupled free-floating ergometers that allowed for power losses to velocity fluctuations. Rower and ergometer kinetics and kinematics were measured during the trials. All nine pairs easily acquired antiphase rowing during the warm-up, while one pair’s coordination briefly switched to in-phase during the maximum effort trial. Although antiphase interpersonal coordination was indeed less accurate and more variable, power production was not negatively affected. Importantly, in antiphase rowing the decreased power loss to velocity fluctuations resulted in more useful power being transferred to the ergometer flywheels. These results imply that antiphase rowing may indeed improve performance, even without any experience with antiphase technique. Furthermore, it demonstrates that although perfectly synchronous coordination may be the most stable, it is not necessarily equated with the most efficient or optimal performance.

Concepts: Kinetic energy, Kinematics, Power, Rowing, Indoor rower, College rowing, History of rowing

166

Power and performance management problem in large scale computing systems like data centers has attracted a lot of interests from both enterprises and academic researchers as power saving has become more and more important in many fields. Because of the multiple objectives, multiple influential factors and hierarchical structure in the system, the problem is indeed complex and hard. In this paper, the problem will be investigated in a virtualized computing system. Specifically, it is formulated as a power optimization problem with some constraints on performance. Then, the adaptive controller based on least-square self-tuning regulator(LS-STR) is designed to track performance in the first step; and the resource solved by the controller is allocated in order to minimize the power consumption as the second step. Some simulations are designed to test the effectiveness of this method and to compare it with some other controllers. The simulation results show that the adaptive controller is generally effective: it is applicable for different performance metrics, for different workloads, and for single and multiple workloads; it can track the performance requirement effectively and save the power consumption significantly.

Concepts: Structure, Effectiveness, Hierarchy, Simulation, Operations research, Optimization, Controllers, Power

163

Inspired by theories of higher local order autocorrelation (HLAC), this paper presents a simple, novel, yet very powerful approach for wood recognition. The method is suitable for wood database applications, which are of great importance in wood related industries and administrations. At the feature extraction stage, a set of features is extracted from Mask Matching Image (MMI). The MMI features preserve the mask matching information gathered from the HLAC methods. The texture information in the image can then be accurately extracted from the statistical and geometrical features. In particular, richer information and enhanced discriminative power is achieved through the length histogram, a new histogram that embodies the width and height histograms. The performance of the proposed approach is compared to the state-of-the-art HLAC approaches using the wood stereogram dataset ZAFU WS 24. By conducting extensive experiments on ZAFU WS 24, we show that our approach significantly improves the classification accuracy.

Concepts: Statistics, Method acting, Histogram, Extraction, Height, Length, Power, The Mask

145

Wireless power delivery has the potential to seamlessly power our electrical devices as easily as data is transmitted through the air. However, existing solutions are limited to near contact distances and do not provide the geometric freedom to enable automatic and un-aided charging. We introduce quasistatic cavity resonance (QSCR), which can enable purpose-built structures, such as cabinets, rooms, and warehouses, to generate quasistatic magnetic fields that safely deliver kilowatts of power to mobile receivers contained nearly anywhere within. A theoretical model of a quasistatic cavity resonator is derived, and field distributions along with power transfer efficiency are validated against measured results. An experimental demonstration shows that a 54 m3 QSCR room can deliver power to small coil receivers in nearly any position with 40% to 95% efficiency. Finally, a detailed safety analysis shows that up to 1900 watts can be transmitted to a coil receiver enabling safe and ubiquitous wireless power.

Concepts: Magnetic field, Energy, Resonator, Radio, Power, Nikola Tesla, Watt, Wireless energy transfer

48

We report a confusing stimulus which demonstrates the power of local interpretation of three-dimensional structure to disrupt a coherent global perception.

Concepts: Philosophy of language, Power

37

PURPOSE: Commencing selected workouts with low muscle glycogen availability augments several markers of training adaptation compared to undertaking the same sessions with normal glycogen content. However, low glycogen availability reduces the capacity to perform high intensity (>85% of peak aerobic power [V˙O2peak]) endurance exercise. We determined whether a low dose of caffeine could partially rescue the reduction in maximal self-selected power output observed when individuals commenced high intensity interval training (HIT) with low (LOW) compared to normal (NORM) glycogen availability. METHODS: Twelve endurance-trained cyclists/triathletes performed four experimental trials using a double-blind Latin square design. Muscle glycogen content was manipulated via exercise-diet interventions so that two experimental trials were commenced with LOW and two with NORM muscle glycogen availability. Sixty minutes prior to an experimental trial, subjects ingested a capsule containing anhydrous caffeine (CAFF; 3 mg·kg body mass) or placebo (PLBO). Instantaneous power output (W) was measured throughout HIT (8 × 5 min bouts at maximum self-selected intensity with 1 min recovery). RESULTS: There were significant main effects for both pre-exercise glycogen content and caffeine ingestion on power output. LOW reduced power output by ∼8% compared to NORM (P < 0.01) whereas caffeine increased power output by 2.8% and 3.5% for NORM and LOW respectively (P < 0.01). CONCLUSIONS: We conclude that caffeine enhanced power output independently of muscle glycogen concentration but could not fully restore power output to levels commensurate with that when subjects commenced exercise with normal glycogen availability. However, the reported increase in power output does provide a likely performance benefit and may provide a means to further enhance the already augmented training response observed when selected sessions are commenced with reduced muscle glycogen availability.

Concepts: Muscle, Physical exercise, English-language films, Caffeine, Exercise physiology, Intensity, High-intensity interval training, Power

31

Electricity generation from flowing water has been developed for over a century and plays a critical role in our lives. Generally, heavy and complex facilities are required for electricity generation, while utilizing these technologies for applications that require a small size and high flexibility is difficult. Here, we developed a fluidic nanogenerator fiber from an aligned carbon nanotube sheet to generate electricity from any flowing water source in the environment as well as in the human body. The power conversion efficiency reached 23.3%. The fluidic nanogenerator fiber was flexible and stretchable, and the high performance was well maintained after deformation over 1,000,000 cycles. The fiber also offered unique and promising advantages, such as the ability to be woven into fabrics for large-scale applications.

Concepts: Human, Natural environment, Carbon, United Kingdom, Human body, Carbon nanotube, Tensile strength, Power

31

Temperature sensors are routinely found in devices used to monitor the environment, the human body, industrial equipment, and beyond. In many such applications, the energy available from batteries or the power available from energy harvesters is extremely limited due to limited available volume, and thus the power consumption of sensing should be minimized in order to maximize operational lifetime. Here we present a new method to transduce and digitize temperature at very low power levels. Specifically, two pA current references are generated via small tunneling-current metal-oxide-semiconductor field effect transistors (MOSFETs) that are independent and proportional to temperature, respectively, which are then used to charge digitally-controllable banks of metal-insulator-metal (MIM) capacitors that, via a discrete-time feedback loop that equalizes charging time, digitize temperature directly. The proposed temperature sensor was integrated into a silicon microchip and occupied 0.15 mm(2) of area. Four tested microchips were measured to consume only 113 pW with a resolution of 0.21 °C and an inaccuracy of ±1.65 °C, which represents a 628× reduction in power compared to prior-art without a significant reduction in performance.

Concepts: Thermodynamics, Integrated circuit, Transistor, Field-effect transistor, CMOS, Sensor, MOSFET, Power

30

Arynes (aromatic systems containing, formally, a carbon-carbon triple bond) are among the most versatile of all reactive intermediates in organic chemistry. They can be ‘trapped’ to give products that are used as pharmaceuticals, agrochemicals, dyes, polymers and other fine chemicals. Here we explore a strategy that unites the de novo generation of benzynes-through a hexadehydro-Diels-Alder reaction-with their in situ elaboration into structurally complex benzenoid products. In the hexadehydro-Diels-Alder reaction, a 1,3-diyne is engaged in a [4+2] cycloisomerization with a ‘diynophile’ to produce the highly reactive benzyne intermediate. The reaction conditions for this simple, thermal transformation are notable for being free of metals and reagents. The subsequent and highly efficient trapping reactions increase the power of the overall process. Finally, we provide examples of how this de novo benzyne generation approach allows new modes of intrinsic reactivity to be revealed.

Concepts: Chemical reaction, Hydrogen, Chemistry, Carbon, Organic chemistry, In situ, Power