Discover the most talked about and latest scientific content & concepts.

Concept: Potato


 To determine whether higher intake of baked or boiled potatoes, French fries, or potato chips is associated with incidence of hypertension.

Concepts: Potato, Potato chip, French fries


Vegetables are important sources of dietary fiber, vitamins and minerals in the diets of children. The United States Department of Agriculture (USDA) National School Lunch Program has new requirements for weekly servings of vegetable subgroups as well as beans and peas. This study estimated the cost impact of meeting the USDA requirements using 2008 national prices for 98 vegetables, fresh, frozen, and canned. Food costs were calculated per 100 grams, per 100 calories, and per edible cup. Rank 6 score, a nutrient density measure was based on six nutrients: dietary fiber; potassium; magnesium; and vitamins A, C, and K. Individual nutrient costs were measured as the monetary cost of 10% daily value of each nutrient per cup equivalent. ANOVAs with post hoc tests showed that beans and starchy vegetables, including white potatoes, were cheaper per 100 calories than were dark-green and deep-yellow vegetables. Fresh, frozen, and canned vegetables had similar nutrient profiles and provided comparable nutritional value. However, less than half (n = 46) of the 98 vegetables listed by the USDA were were consumed >5 times by children and adolescents in the 2003-4 National Health and Nutrition Examination Survey database. For the more frequently consumed vegetables, potatoes and beans were the lowest-cost sources of potassium and fiber. These new metrics of affordable nutrition can help food service and health professionals identify those vegetable subgroups in the school lunch that provide the best nutritional value per penny.

Concepts: Nutrition, Nutrient, Vitamin, Essential nutrient, Vegetable, Dietary fiber, Potato, National School Lunch Act


Pest and pathogen losses jeopardise global food security and ever since the 19(th) century Irish famine, potato late blight has exemplified this threat. The causal oomycete pathogen, Phytophthora infestans, undergoes major population shifts in agricultural systems via the successive emergence and migration of asexual lineages. The phenotypic and genotypic bases of these selective sweeps are largely unknown but management strategies need to adapt to reflect the changing pathogen population. Here, we used molecular markers to document the emergence of a lineage, termed 13_A2, in the European P. infestans population, and its rapid displacement of other lineages to exceed 75% of the pathogen population across Great Britain in less than three years. We show that isolates of the 13_A2 lineage are among the most aggressive on cultivated potatoes, outcompete other aggressive lineages in the field, and overcome previously effective forms of plant host resistance. Genome analyses of a 13_A2 isolate revealed extensive genetic and expression polymorphisms particularly in effector genes. Copy number variations, gene gains and losses, amino-acid replacements and changes in expression patterns of disease effector genes within the 13_A2 isolate likely contribute to enhanced virulence and aggressiveness to drive this population displacement. Importantly, 13_A2 isolates carry intact and in planta induced Avrblb1, Avrblb2 and Avrvnt1 effector genes that trigger resistance in potato lines carrying the corresponding R immune receptor genes Rpi-blb1, Rpi-blb2, and Rpi-vnt1.1. These findings point towards a strategy for deploying genetic resistance to mitigate the impact of the 13_A2 lineage and illustrate how pathogen population monitoring, combined with genome analysis, informs the management of devastating disease epidemics.

Concepts: Gene, Genetics, Potato, Oomycete, Phytophthora infestans, Great Famine, Potatoes, Phytophthora


Modulation of the malate content of tomato (Solanum lycopersicum) fruit by altering the expression of mitochondrially localized enzymes of the tricarboxylic acid cycle resulted in enhanced transitory starch accumulation and subsequent effects on postharvest fruit physiology. In this study, we assessed whether such a manipulation would similarly affect starch biosynthesis in an organ that displays a linear, as opposed to a transient, kinetic of starch accumulation. For this purpose, we used RNA interference to down-regulate the expression of fumarase in potato (Solanum tuberosum) under the control of the tuber-specific B33 promoter. Despite displaying similar reductions in both fumarase activity and malate content as observed in tomato fruit expressing the same construct, the resultant transformants were neither characterized by an increased flux to, or accumulation of, starch, nor by alteration in yield parameters. Since the effect in tomato was mechanistically linked to derepression of the reaction catalyzed by ADP-glucose pyrophosphorylase, we evaluated whether the lack of effect on starch biosynthesis was due to differences in enzymatic properties of the enzyme from potato and tomato or rather due to differential subcellular compartmentation of reductant in the different organs. The results are discussed in the context both of current models of metabolic compartmentation and engineering.

Concepts: Metabolism, Adenosine triphosphate, Enzyme, Starch, Tomato, Solanaceae, Solanum, Potato


Phytophthora infestans, the cause of potato late blight, is infamous for having triggered the Irish Great Famine in the 1840s. Until the late 1970s, P. infestans diversity outside of its Mexican center of origin was low, and one scenario held that a single strain, US-1, had dominated the global population for 150 years; this was later challenged based on DNA analysis of historical herbarium specimens. We have compared the genomes of 11 herbarium and 15 modern strains. We conclude that the 19th century epidemic was caused by a unique genotype, HERB-1, that persisted for over 50 years. HERB-1 is distinct from all examined modern strains, but it is a close relative of US-1, which replaced it outside of Mexico in the 20th century. We propose that HERB-1 and US-1 emerged from a metapopulation that was established in the early 1800s outside of the species' center of diversity. DOI:

Concepts: DNA, Potato, Oomycete, Phytophthora infestans, Overpopulation, Great Famine, Potatoes, Phytophthora


BACKGROUND: Strategies that may increase compliance to reduced energy intakes are needed to reduce the health burden of obesity. Conflicting evidence exists regarding the effects of snacking on satiety and energy intake. METHODS: This study compared short-term satiety from two common snack foods, low fat popcorn or potato chips. Using a counterbalanced within-subject design, 35 normal weight non-smoking participants (17 men, 18 women) ages 20–50 years (mean age 33 +/- 11, BMI 23 +/- 2 kg/m2) consumed four conditions each: 200 mL of water (control), one cup (4 g, 15 kcal) popcorn, 6 cups (27 g, 100 kcal) popcorn, and one cup (28 g, 150 kcal) potato chips, each with 200 mL water. Participants rated their hunger, satisfaction, prospective consumption, and thirst on 100 mm visual analogue scales 30 minutes after commencement of snack consumption. In addition, post-snack energy intake from an ad libitum meal (amount served less amount remaining) was measured, and the test food and meal combined energy intake and energy compensation were calculated. RESULTS: Participants expressed less hunger, more satisfaction, and lower estimates of prospective food consumption after six cups of popcorn compared to all other treatments (P < 0.05). Energy compensation was 220% +/- 967%, 76% +/- 143% and 42% +/- 75% after one cup popcorn, six cups popcorn and one cup potato chips, respectively. Combined energy intake was significantly greater (P < 0.01) during the potato chips condition (803 +/- 277 kcal) compared to control (716 +/- 279 kcal) or popcorn conditions (698 +/- 286 kcal for one cup and 739 +/- 294 kcal for six cups). Combined energy intakes from both popcorn conditions were not significantly different than control (p > 0.05). CONCLUSION: Popcorn exerted a stronger effect on short-term satiety than did potato chips as measured by subjective ratings and energy intake at a subsequent meal. This, combined with its relatively low calorie load, suggests that whole grain popcorn is a prudent choice for those wanting to reduce feelings of hunger while managing energy intake and ultimately, body weight.

Concepts: Food, Potato, Snack foods, Snack food, Meal, Calorie, Potato chip, Popcorn


Phytophthora infestans (Mont.) de Bary, the causal agent of potato late blight, was responsible for the Irish potato famine of the 1840s. Initial disease outbreaks occurred in the US in 1843, two years prior to European outbreaks. We examined the evolutionary relationships and source of the 19th-century outbreaks using herbarium specimens of P. infestans from historic (1846-1970) and more recent isolates (1992-2014) of the pathogen. The same unique SSR multilocus genotype, named here as FAM-1, caused widespread outbreaks in both US and Europe. The FAM-1 lineage shared allelic diversity and grouped with the oldest specimens collected in Colombia and Central America. The FAM-1 lineage of P. infestans formed a genetic group that was distinct from more recent aggressive lineages found in the US. The US-1 lineage formed a second, mid-20th century group. Recent modern US lineages and the oldest Mexican lineages formed a genetic group with recent Mexican lineages, suggesting a Mexican origin of recent US lineages. A survey of mitochondrial haplotypes in a larger set of global herbarium specimens documented the more frequent occurrence of the HERB-1 (type Ia) mitochondrial haplotype in archival collections from 1866-75 and 1906-1915 and the rise of the Ib mitochondrial lineage (US-1) between 1946-1955. The FAM-1 SSR lineage survived for almost 100 years in the US, was geographically widespread, and was displaced first in the mid-20th century by the US-1 lineage and then by distinct new aggressive lineages that migrated from Mexico.

Concepts: Evolution, Potato, Plant pathogens and diseases, Oomycete, Phytophthora infestans, Great Famine, Potatoes, Phytophthora


Potato (Solanum tuberosum L.) originates from the Andes and evolved short-day-dependent tuber formation as a vegetative propagation strategy. Here we describe the identification of a central regulator underlying a major-effect quantitative trait locus for plant maturity and initiation of tuber development. We show that this gene belongs to the family of DOF (DNA-binding with one finger) transcription factors and regulates tuberization and plant life cycle length, by acting as a mediator between the circadian clock and the StSP6A mobile tuberization signal. We also show that natural allelic variants evade post-translational light regulation, allowing cultivation outside the geographical centre of origin of potato. Potato is a member of the Solanaceae family and is one of the world’s most important food crops. This annual plant originates from the Andean regions of South America. Potato develops tubers from underground stems called stolons. Its equatorial origin makes potato essentially short-day dependent for tuberization and potato will not make tubers in the long-day conditions of spring and summer in the northern latitudes. When introduced in temperate zones, wild material will form tubers in the course of the autumnal shortening of day-length. Thus, one of the first selected traits in potato leading to a European potato type is likely to have been long-day acclimation for tuberization. Potato breeders can exploit the naturally occurring variation in tuberization onset and life cycle length, allowing varietal breeding for different latitudes, harvest times and markets.

Concepts: Genetics, Solanaceae, Potato, Plant stem, Tuber, Plant reproduction, Andes, Rhizome


The consumption of sweetened beverages, refined foods, and pastries has been shown to be associated with an increased risk of depression in longitudinal studies. However, any influence that refined carbohydrates has on mood could be commensurate with their proportion in the overall diet; studies are therefore needed that measure overall intakes of carbohydrate and sugar, glycemic index (GI), and glycemic load.

Concepts: Nutrition, Food, Carbohydrate, Sugar, Glycemic index, Potato, Glycemic load, Insulin index


Cyclodextrins (CD) are cyclic α-1,4-glucans composed of glucose units, and they have multiple applications in food, pharmaceuticals, cosmetics, agriculture, chemicals, etc. CD are usually produced by cyclodextrin glycosyltransferase (CGTase) from starch. In the present study, a simultaneous conversion approach was developed to improve the yield of CD from starch by conjunction use of isoamylase with α-CGTase. The isoamylase of Thermobifida fusca was cloned and expressed in Escherichia coli BL21(DE3). The biochemical characterization of the enzyme showed that the optimum temperature and pH of the recombinant enzyme was 50 °C and 5.5, respectively, and it maintained 60 %, 85 % and 78 % relative activity at 30 °C, 40 °C and 60 °C, respectively. When the recombinant isoamylase and α-CGTase were used simultaneously to convert potato starch (15 %, w/v) into CD, the optimum conditions were found to be: 10 U of α-CGTase and 48 U of isoamylase per gram of substrate, with reaction temperature of 30 °C and pH 5.6. On the optimum condition, the total yield of CD reached 84.6 % (w/w) after 24 h, which was 31.2 % higher than transformation with α-CGTase alone. This is the first report of synchronous bioconversion of CD by both α-CGTase and isoamylase, and represents the highest efficiency of CD production reported so far.

Concepts: Molecular biology, Enzyme, Glucose, Escherichia coli, Starch, Potato, Cyclodextrin, Cyclodextrin glycosyltransferase