Discover the most talked about and latest scientific content & concepts.

Concept: Potato cyst nematode


SUMMARY The potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis are major pests of potatoes. The G. pallida (and G. rostochiensis) life cycle includes both diapause and quiescent stages. Nematodes in dormancy (diapause or quiescent) are adapted for long-term survival and are more resistant to nematicides. This study analysed the mechanisms underlying diapause and quiescence. The effects of several compounds (8Br-cGMP, oxotremorine and atropine) on the activation of hatching were studied. The measurements of some morphometric parameters in diapaused and quiescent eggs after exposure to PRD revealed differences in dorsal gland length, subventral gland length and dorsal gland nucleolus. In addition, the expression of 2 effectors (IVg9 and cellulase) was not induced in diapaused eggs in water or PRD, while expression was slightly induced in quiescent eggs. Finally, we performed a comparative study to identify orthologues of C. elegans diapause related genes in plant-parasitic nematodes (G. pallida, Meloidogyne incognita, M. hapla and Bursaphelenchus xylophilus). This analysis suggested that it was not possible to identify G. pallida orthologues of the majority of C. elegans genes involved in the control of dauer formation. All these data suggest that G. pallida may use different mechanisms to C. elegans in regulating the survival stage.

Concepts: Parasites, RNA, Caenorhabditis elegans, Nematode, Model organism, Nematodes, Plant pathogens and diseases, Potato cyst nematode


Plant-parasitic nematodes (PPN) need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest including hatching inhibition and dauer stages are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN) (Globodera pallida and G. rostochiensis) are frequently in an anhydrobiotic state, with unhatched nematode persisting for extended periods of time inside the cyst in the absence of the host. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G. pallida to hydration and following exposure to tomato root diffusate (RD) using microarray gene expression analysis encompassing a broad set of genes. For the quiescent eggs, 547 genes showed differential expression following hydration vs. hydratation and RD (H-RD) treatment whereas 708 genes showed differential regulation for the diapaused eggs following these treatments. The comparison between hydrated quiescent and diapaused eggs showed marked differences, with 2,380 genes that were differentially regulated compared with 987 genes following H-RD. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long-term survival. Transport activity is highly up-regulated following H-RD and few genes were coincident between both kinds of eggs. With the quiescent eggs, the majority of genes were related to ion transport (mainly sodium), while the diapaused eggs showed a major diversity of transporters (amino acid transport, ion transport, acetylcholine or other molecules).

Concepts: DNA, Gene, Genetics, Gene expression, Bacteria, Nematodes, DNA microarray, Potato cyst nematode


Correct identification of species and pathotypes is must for eradication of potato cyst nematodes (PCN). The identification of PCN species after completing the life cycle is very difficult because it is based on morphological and morphometrical characteristics. Genetically different populations of PCN are morphologically same and differentiated based on the host differential study. Later on these traditional techniques have been replaced by biochemical techniques viz, one and two dimensional gel electrophoresis, capillary gel electrophoresis, isozymes, dot blot hybridization and isoelectric focusing etc. to distinguish both the species. One and two dimensional gel electrophoresis has used to examine inter- and intra-specific differences in proteins of Globodera rostochiensis and G. pallida. Now application of PCR and DNA based characterization techniques like RAPD, AFLP and RFLP are the important tools for differentiating inter- and intra specific variation in PCN and has given opportunities to accurate identification of PCN. For managing the PCN, till now we are following integrated pest management (IPM) strategies, however these strategies are not effective to eradicate the PCN. Therefore to eradicate the PCN we need noval management practices like RNAi (RNA interference) or Gene silencing.

Concepts: DNA, Protein, Molecular biology, RNA, Gel electrophoresis, Electrophoresis, Two-dimensional gel electrophoresis, Potato cyst nematode


Improving resistance durability involves to be able to predict the adaptation speed of pathogen populations. Identifying the genetic bases of pathogen adaptation to plant resistances is a useful step to better understand and anticipate this phenomenon. Globodera pallida is a major pest of potato crop for which a resistance QTL, GpaVvrn , has been identified in Solanum vernei. However, its durability is threatened as G. pallida populations are able to adapt to the resistance in few generations. The aim of the present study was to investigate the genomic regions involved in the resistance breakdown by coupling experimental evolution and high-density genome scan. We performed a whole genome resequencing of pools of individuals (Pool-Seq) belonging to G. pallida lineages derived from two independent populations having experimentally evolved on susceptible and resistant potato cultivars. About 1.6 million SNPs were used to perform the genome scan using a recent model testing for adaptive differentiation and association to population-specific covariables. We identified 275 outliers and 31 of them, which also showed a significant reduction of diversity in adapted lineages, were investigated for their genic environment. Some candidate genomic regions contained genes putatively encoding effectors and were enriched in SPRYSECs, known in cyst nematodes to be involved in pathogenicity and in (a)virulence. Validated candidate SNPs will provide a useful molecular tool to follow frequencies of virulence alleles in natural G. pallida populations and define efficient strategies of use of potato resistances maximizing their durability. This article is protected by copyright. All rights reserved.

Concepts: DNA, Gene, Genetics, Evolution, Model organism, Nematodes, Adaptation, Potato cyst nematode


Seven filamentous fungal species were isolated from individual eggs of Globodera pallida cysts collected from infested fields in Shelley Idaho, USA and identified as Chaetomium globosum, Fusarium oxysporum, Fusarium solani, Fusarium tricinctum, Microdochium bolleyi, Purpureocillium lilacinum, and Plectosphaerella cucumerina. Their ability to reduce infection by G. pallida in planta were assessed in simple, reproducible micro-rhizosphere chambers (micro-ROCs). All fungi reduced G. pallida infection in potato, but greatest reduction was observed with C. globosum at an average reduction of 76%. Further non-destructive methods were developed to rapidly assess biological control potential of putative fungal strains by staining the infectious second stage juveniles of G. pallida with the live fluorescent stain PKH26. In comparisons between the standard, invasive acid fuchsin method and use of the live stain PKH26, no significant difference in infection level of G. pallida was observed whether roots were stained with PKH26 or acid fuchsin. For both methods, a similar reduction (77% for acid fuchsin, and 78% for PKH26 stain) in invasion of infectious stage of G. pallida was observed when potato plants were inoculated with C. globosum compared to non-inoculated potato.

Concepts: Parasites, Biology, Fungus, Fusarium oxysporum, Staining, Stain, Plant pathogens and diseases, Potato cyst nematode


The potato cyst nematodes Globodera pallida and G. rostochiensis are economically important plant pathogens causing losses to UK potato harvests estimated at £50m/ year. Implications of climate change on their future pest status have not been fully considered. Here, we report growth of female G. pallida and G. rostochiensis over the range 15 to 25 °C. Females per plant and their fecundity declined progressively with temperatures above 17.5 °C for G. pallida, whilst females per plant were optimal between 17.5 and 22.5 °C for G. rostochiensis. Relative reproductive success with temperature was confirmed on two potato cultivars infected with either species at 15, 22.5 and 25 °C. The reduced reproductive success of G. pallida at 22.5 °C relative to 15 °C was also recorded for a further seven host cultivars studied. The differences in optimal temperatures for reproductive success may relate to known differences in the altitude of their regions of origin in the Andes. Exposure of G. pallida to a diurnal temperature stress for one week during female growth significantly suppressed subsequent growth for one week at 17.5 °C but had no effect on G. rostochiensis. However, after two weeks of recovery female size was not significantly different from that for the control treatment. Future soil temperatures were simulated for medium and high emissions scenarios and combined with nematode growth data to project future implications of climate change for the two species. Increased soil temperatures associated with climate change may reduce the pest status of G. pallida but benefit G. rostochiensis especially in southern UK. We conclude that plant breeders may be able to exploit the thermal limits of G. pallida by developing potato cultivars able to grow under future warm summer conditions. Existing widely deployed resistance to G. rostochiensis is an important characteristic to retain for new potato cultivars. This article is protected by copyright. All rights reserved.

Concepts: Human, Male, Female, United Kingdom, Seed, Andes, Copyright, Potato cyst nematode


Three field experiments evaluated the performance of the nematicide fluensulfone against the potato cyst nematode Globodera pallida in Shropshire, England.

Concepts: Experimental design, Parasites, Evaluation methods, Nematodes, Pesticide, Plant pathogens and diseases, Potatoes, Potato cyst nematode


Distinct populations of the potato cyst nematode (PCN) Globodera pallida exist in the UK that differ in their ability to overcome various sources of resistance. An efficient method for distinguishing between populations would enable pathogen-informed cultivar choice in the field. Science and Advice for Scottish Agriculture (SASA) annually undertake national DNA diagnostic tests to determine the presence of PCN in potato seed and ware land by extracting DNA from soil floats. These DNA samples provide a unique resource for monitoring the distribution of PCN and further interrogation of the diversity within species. We identify a region of mitochondrial DNA descriptive of three main groups of G. pallida present in the UK and adopt a metagenetic approach to the sequencing and analysis of all SASA samples simultaneously. Using this approach, we describe the distribution of G. pallida mitotypes across Scotland with field-scale resolution. Most fields contain a single mitotype, one-fifth contain a mix of mitotypes, and less than 3% contain all three mitotypes. Within mixed fields, we were able to quantify the relative abundance of each mitotype across an order of magnitude. Local areas within mixed fields are dominated by certain mitotypes and indicate towards a complex underlying ‘pathoscape’. Finally, we assess mitotype distribution at the level of the individual cyst and provide evidence of ‘hybrids’. This study provides a method for accurate, quantitative and high-throughput typing of up to one thousand fields simultaneously, while revealing novel insights into the national genetic variability of an economically important plant parasite.

Concepts: DNA, Parasites, Biology, Mitochondrion, Nematodes, Field, Potatoes, Potato cyst nematode


The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

Concepts: Protein, Gene, Cell, Bacteria, Amino acid, Endoplasmic reticulum, Nematodes, Potato cyst nematode


The potato cyst nematode Globodera pallida has biotrophic interactions with its host. The nematode induces a feeding structure - the syncytium - which it keeps alive for the duration of the life cycle and on which it depends for all nutrients required to develop to the adult stage. Interactions of G .pallida with the host are mediated by effectors, which are produced in two sets of gland cells. These effectors suppress host defences, facilitate migration and induce the formation of the syncytium.

Concepts: Gene, Parasites, Nematodes, Gland, Induced demand, Potatoes, Potato cyst nematode