SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Pork

252

Objective To determine the association of different types of meat intake and meat associated compounds with overall and cause specific mortality.Design Population based cohort study.Setting Baseline dietary data of the NIH-AARP Diet and Health Study (prospective cohort of the general population from six states and two metropolitan areas in the US) and 16 year follow-up data until 31 December 2011.Participants 536 969 AARP members aged 50-71 at baseline.Exposures Intake of total meat, processed and unprocessed red meat (beef, lamb, and pork) and white meat (poultry and fish), heme iron, and nitrate/nitrite from processed meat based on dietary questionnaire. Adjusted Cox proportional hazards regression models were used with the lowest fifth of calorie adjusted intakes as reference categories.Main outcome measure Mortality from any cause during follow-up.Results An increased risk of all cause mortality (hazard ratio for highest versus lowest fifth 1.26, 95% confidence interval 1.23 to 1.29) and death due to nine different causes associated with red meat intake was observed. Both processed and unprocessed red meat intakes were associated with all cause and cause specific mortality. Heme iron and processed meat nitrate/nitrite were independently associated with increased risk of all cause and cause specific mortality. Mediation models estimated that the increased mortality associated with processed red meat was influenced by nitrate intake (37.0-72.0%) and to a lesser degree by heme iron (20.9-24.1%). When the total meat intake was constant, the highest fifth of white meat intake was associated with a 25% reduction in risk of all cause mortality compared with the lowest intake level. Almost all causes of death showed an inverse association with white meat intake.Conclusions The results show increased risks of all cause mortality and death due to nine different causes associated with both processed and unprocessed red meat, accounted for, in part, by heme iron and nitrate/nitrite from processed meat. They also show reduced risks associated with substituting white meat, particularly unprocessed white meat.

Concepts: Death, Iron, Demography, Meat, Pork, Red meat, White meat, Poultry

230

Repeated nucleotide sequences combined with proteins called telomeres cover chromosome ends and dictate cells lifespan. Many factors can modify telomere length, among them are: nutrition and smoking habits, physical activities and socioeconomic status measured by education level. The aim of the study was to determine the influence of above mentioned factors on peripheral blood mononuclear cells telomere length.

Concepts: DNA, Protein, Gene, Nutrition, DNA replication, Telomere, PBMC, Pork

197

Background: Suboptimal diet is one of the most important factors in preventing early death and disability worldwide.Objective: The aim of this meta-analysis was to synthesize the knowledge about the relation between intake of 12 major food groups, including whole grains, refined grains, vegetables, fruits, nuts, legumes, eggs, dairy, fish, red meat, processed meat, and sugar-sweetened beverages, with risk of all-cause mortality.Design: We conducted a systematic search in PubMed, Embase, and Google Scholar for prospective studies investigating the association between these 12 food groups and risk of all-cause mortality. Summary RRs and 95% CIs were estimated with the use of a random effects model for high-intake compared with low-intake categories, as well as for linear and nonlinear relations. Moreover, the risk reduction potential of foods was calculated by multiplying the RR by optimal intake values (serving category with the strongest association) for risk-reducing foods or risk-increasing foods, respectively.Results: With increasing intake (for each daily serving) of whole grains (RR: 0.92; 95% CI: 0.89, 0.95), vegetables (RR: 0.96; 95% CI: 0.95, 0.98), fruits (RR: 0.94; 95% CI: 0.92, 0.97), nuts (RR: 0.76; 95% CI: 0.69, 0.84), and fish (RR: 0.93; 95% CI: 0.88, 0.98), the risk of all-cause mortality decreased; higher intake of red meat (RR: 1.10; 95% CI: 1.04, 1.18) and processed meat (RR: 1.23; 95% CI: 1.12, 1.36) was associated with an increased risk of all-cause mortality in a linear dose-response meta-analysis. A clear indication of nonlinearity was seen for the relations between vegetables, fruits, nuts, and dairy and all-cause mortality. Optimal consumption of risk-decreasing foods results in a 56% reduction of all-cause mortality, whereas consumption of risk-increasing foods is associated with a 2-fold increased risk of all-cause mortality.Conclusion: Selecting specific optimal intakes of the investigated food groups can lead to a considerable change in the risk of premature death.

Concepts: Nutrition, Death, Meat, Fruit, Random effects model, Pork, Whole grain, Refined grains

191

Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that underlie phenotypic evolution in European domestic pigs. Selective sweep analyses revealed strong signatures of selection at three loci harboring quantitative trait loci that explain a considerable part of one of the most characteristic morphological changes in the domestic pig-the elongation of the back and an increased number of vertebrae. The three loci were associated with the NR6A1, PLAG1, and LCORL genes. The latter two have repeatedly been associated with loci controlling stature in other domestic animals and in humans. Most European domestic pigs are homozygous for the same haplotype at these three loci. We found an excess of derived nonsynonymous substitutions in domestic pigs, most likely reflecting both positive selection and relaxed purifying selection after domestication. Our analysis of structural variation revealed four duplications at the KIT locus that were exclusively present in white or white-spotted pigs, carrying the Dominant white, Patch, or Belt alleles. This discovery illustrates how structural changes have contributed to rapid phenotypic evolution in domestic animals and how alleles in domestic animals may evolve by the accumulation of multiple causative mutations as a response to strong directional selection.

Concepts: Genetics, Natural selection, Pig, Wild boar, Domestic pig, Suidae, Selection, Pork

166

China is one of the most diverse countries, which have developed 88 indigenous pig breeds. Several studies showed that pigs were independently domesticated in multiple regions of the world. The purpose of this study was to investigate the origin and evolution of Chinese pigs using complete mitochondrial genomic sequences (mtDNA) from Asian and European domestic pigs and wild boars. Thirty primer pairs were designed to determine the mtDNA sequences of Xiang pig, Large White, Lantang, Jinhua and Pietrain. The phylogenetic status of Chinese native pigs was investigated by comparing the mtDNA sequences of complete coding regions and D-loop regions respectively amongst Asian breeds, European breeds and wild boars. The analyzed results by two cluster methods contributed to the same conclusion that all pigs were classified into two major groups, European clade and Asian clade. It revealed that Chinese pigs were only recently diverged from each other and distinctly different from European pigs. Berkshire was clustered with Asian pigs and Chinese pigs were involved in the development of Berkshire breeding. The Malaysian wild boar had distant genetic relationship with European and Asian pigs. Jinhua and Lanyu pigs had more nucleotide diversity with Chinese pigs although they all belonged to the Asian major clade. Chinese domestic pigs were clustered with wild boars in Yangtze River region and South China.

Concepts: DNA, China, Pig, Wild boar, Domestic pig, Suidae, Pork, Razorback

146

Topical hemostatic agents are used intra-operatively to prevent uncontrolled bleeding. Gelfoam(®) Powder contains a hemostatic agent prepared from purified pork skin gelatin, the efficacy of which is increased when combined with thrombin. However, the effect of increasing concentrations of thrombin on resultant hemostasis is not known. This study sought to evaluate the ability of various concentrations of thrombin in combination with Gelfoam Powder to control bleeding using a swine liver lesion model. Ten pigs underwent a midline laparotomy. Circular lesions were created in the left medial, right medial, and left lateral lobes; six lesions per lobe. Gelfoam Powder was hydrated with Thrombin-JMI(®) diluted to 250, 375, and 770 IU/mL. Each concentration was applied to two lesion sites per lobe. Bleeding scores were measured at 3, 6, 9, and 12 min using a 6-point system; comparison of bleeding scores was performed using ANOVA with the post hoc Tukey test. The bleeding scores with thrombin concentrations at 770 IU/mL were significantly lower than at 250 and 375 IU/mL at all four time points. The percentage of biopsies with a clinically acceptable bleeding score rose from 37.9, 46.6, and 71.2 % at 3 min to 55.2, 69.0, and 88.1 % at 12 min in the 250, 375, and 770 IU/mL thrombin groups, respectively. The study showed that the hemostatic response to thrombin was dose-related: using higher concentrations of thrombin with Gelfoam Powder yielded improved hemostasis, as determined by lower bleeding scores.

Concepts: Hemostasis, Pork, Antihemorrhagic, Antihemorrhagics, Chitosan

118

Dietary guidelines emphasize selecting lean (low-fat) meats to reduce saturated fat and cholesterol, but growing evidence suggests that health effects may relate to other ingredients, such as sodium, heme iron, or L-carnitine. Understanding how meats influence health, and on which nutrients this relationship depends, is essential to advise consumer choices, set guidelines, and inform food reformulations. A recent study published in BMC Medicine involving 448,568 participants in 10 European countries, provides important evidence in this regard. After multivariate adjustment, intake of unprocessed red meat was not significantly associated with total or cause-specific mortality; conversely, intake of processed meat was associated with a 30% higher rate of cardiovascular disease (CVD) (per 50g/day, relative risk 1.30, 95% confidence interval 1.17 to 1.45) and also higher cancer mortality. These findings are consistent with our previous meta-analysis, based on smaller studies, showing strong associations of processed meats, but not unprocessed meats, with CVD. Preservatives are the notable difference; the calculated blood-pressure effects of sodium differences (around 400% higher in processed meats) explain most of the observed higher risk. Although unprocessed red meats seem to be relatively neutral for CVD, healthier choices are available, including fish, nuts, legumes, fruits, and vegetables. Public-health guidance should prioritize avoidance of processed meats, including the low-fat deli meats currently marketed as healthy choices, and the food industry should substantially reduce sodium and other preservatives in processed meats.

Concepts: Health, Nutrition, Meat, Saturated fat, Livestock, Pork, Red meat, White meat

54

This paper is based on a workshop held in Oslo, Norway in November 2013, in which experts discussed how to reach consensus on the healthiness of red and processed meat. Recent nutritional recommendations include reducing intake of red and processed meat to reduce cancer risk, in particular colorectal cancer (CRC). Epidemiological and mechanistic data on associations between red and processed meat intake and CRC are inconsistent and underlying mechanisms are unclear. There is a need for further studies on differences between white and red meat, between processed and whole red meat and between different types of processed meats, as potential health risks may not be the same for all products. Better biomarkers of meat intake and of cancer occurrence and updated food composition databases are required for future studies. Modifying meat composition via animal feeding and breeding, improving meat processing by alternative methods such as adding phytochemicals and improving our diets in general are strategies that need to be followed up.

Concepts: Cancer, Nutrition, Meat, Saturated fat, Livestock, Pork, Red meat, White meat

50

Growing evidence suggests that effects of red meat consumption on coronary heart disease (CHD) and type 2 diabetes could vary depending on processing. We reviewed the evidence for effects of unprocessed (fresh/frozen) red and processed (using sodium/other preservatives) meat consumption on CHD and diabetes. In meta-analyses of prospective cohorts, higher risk of CHD is seen with processed meat consumption (RR per 50 g: 1.42, 95 %CI = 1.07-1.89), but a smaller increase or no risk is seen with unprocessed meat consumption. Differences in sodium content (~400 % higher in processed meat) appear to account for about two-thirds of this risk difference. In similar analyses, both unprocessed red and processed meat consumption are associated with incident diabetes, with higher risk per g of processed (RR per 50 g: 1.51, 95 %CI = 1.25-1.83) versus unprocessed (RR per 100 g: 1.19, 95 % CI = 1.04-1.37) meats. Contents of heme iron and dietary cholesterol may partly account for these associations. The overall findings suggest that neither unprocessed red nor processed meat consumption is beneficial for cardiometabolic health, and that clinical and public health guidance should especially prioritize reducing processed meat consumption.

Concepts: Nutrition, Coronary artery disease, Heart, Meat, Saturated fat, Pork, Red meat, White meat

46

For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ∼1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.

Concepts: Gene, Organism, RNA, Pig, Wild boar, Domestic pig, Suidae, Pork