Discover the most talked about and latest scientific content & concepts.

Concept: Pollinator decline


The causes of declines in bees and other pollinators remains an on-going debate. While recent attention has focussed upon pesticides, other environmental pollutants have largely been ignored. Aluminium is the most significant environmental contaminant of recent times and we speculated that it could be a factor in pollinator decline. Herein we have measured the content of aluminium in bumblebee pupae taken from naturally foraging colonies in the UK. Individual pupae were acid-digested in a microwave oven and their aluminium content determined using transversely heated graphite furnace atomic absorption spectrometry. Pupae were heavily contaminated with aluminium giving values between 13.4 and 193.4 μg/g dry wt. and a mean (SD) value of 51.0 (33.0) μg/g dry wt. for the 72 pupae tested. Mean aluminium content was shown to be a significant negative predictor of average pupal weight in colonies. While no other statistically significant relationships were found relating aluminium to bee or colony health, the actual content of aluminium in pupae are extremely high and demonstrate significant exposure to aluminium. Bees rely heavily on cognitive function and aluminium is a known neurotoxin with links, for example, to Alzheimer’s disease in humans. The significant contamination of bumblebee pupae by aluminium raises the intriguing spectre of cognitive dysfunction playing a role in their population decline.

Concepts: Statistics, Pollination, Pollinator decline, Pollination syndrome, Bee, Bumblebee, Pollinator, Soil contamination


Insect pollinators such as bumblebees play a vital role in many ecosystems, so it is important to understand their foraging movements on a landscape scale. We used harmonic radar to record the natural foraging behaviour of Bombus terrestris audax workers over their entire foraging career. Every flight ever made outside the nest by four foragers was recorded. Our data reveal where the bees flew and how their behaviour changed with experience, at an unprecedented level of detail. We identified how each bee’s flights fit into two categories-which we named exploration and exploitation flights-examining the differences between the two types of flight and how their occurrence changed over the course of the bees' foraging careers. Exploitation of learned resources takes place during efficient, straight trips, usually to a single foraging location, and is seldom combined with exploration of other areas. Exploration of the landscape typically occurs in the first few flights made by each bee, but our data show that further exploration flights can be made throughout the bee’s foraging career. Bees showed striking levels of variation in how they explored their environment, their fidelity to particular patches, ratio of exploration to exploitation, duration and frequency of their foraging bouts. One bee developed a straight route to a forage patch within four flights and followed this route exclusively for six days before abandoning it entirely for a closer location; this second location had not been visited since her first exploratory flight nine days prior. Another bee made only rare exploitation flights and continued to explore widely throughout its life; two other bees showed more frequent switches between exploration and exploitation. Our data shed light on the way bumblebees balance exploration of the environment with exploitation of resources and reveal extreme levels of variation between individuals.

Concepts: Honey bee, Pollinator decline, Bee, Bumblebee, Pollinator, Apidae, Pollinators, Foraging


Insect pollinators provide a crucial ecosystem service, but are under threat. Urban areas could be important for pollinators, though their value relative to other habitats is poorly known. We compared pollinator communities using quantified flower-visitation networks in 36 sites (each 1 km(2)) in three landscapes: urban, farmland and nature reserves. Overall, flower-visitor abundance and species richness did not differ significantly between the three landscape types. Bee abundance did not differ between landscapes, but bee species richness was higher in urban areas than farmland. Hoverfly abundance was higher in farmland and nature reserves than urban sites, but species richness did not differ significantly. While urban pollinator assemblages were more homogeneous across space than those in farmland or nature reserves, there was no significant difference in the numbers of rarer species between the three landscapes. Network-level specialization was higher in farmland than urban sites. Relative to other habitats, urban visitors foraged from a greater number of plant species (higher generality) but also visited a lower proportion of available plant species (higher specialization), both possibly driven by higher urban plant richness. Urban areas are growing, and improving their value for pollinators should be part of any national strategy to conserve and restore pollinators.

Concepts: Biodiversity, Life, Insect, Ecosystem, Pollinator decline, Bee, Pollinator, Landscape


As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.

Concepts: Evolution, Understanding, Ecology, Research, Sequence, Pollinator decline, Bee, Pollinator


Bumblebees secrete a substance from their tarsi wherever they land, which can be detected by conspecifics. These secretions are referred to as scent-marks, which bumblebees are able to use as social cues. Although it has been found that bumblebees can detect and associate scent-marks with rewarding or unrewarding flowers, their ability at discriminating between scent-marks from bumblebees of differing relatedness is unknown. We performed three separate experiments with bumblebees (Bombus terrestris), where they were repeatedly exposed to rewarding and unrewarding artificial flowers simultaneously. Each flower type carried scent-marks from conspecifics of differing relatedness or were unmarked. We found that bumblebees are able to distinguish between 1. Unmarked flowers and flowers that they themselves had scent-marked, 2. Flowers scent-marked by themselves and flowers scent-marked by others in their nest (nestmates), and 3. Flowers scent-marked by their nestmates and flowers scent-marked by non-nestmates. The bumblebees found it more difficult to discriminate between each of the flower types when both flower types were scent-marked. Our findings show that bumblebees have the ability to discriminate between scent-marks of conspecifics, which are potentially very similar in their chemical composition, and they can use this ability to improve their foraging success.

Concepts: Pollination, Flower, Pollinator decline, Pollination syndrome, Bee, Bumblebee, Bombus terrestris, Bumblebees


Chronic exposure to neonicotinoid insecticides has been linked to reduced survival of pollinating insects at both the individual and colony level, but so far only experimentally. Analyses of large-scale datasets to investigate the real-world links between the use of neonicotinoids and pollinator mortality are lacking. Moreover, the impacts of neonicotinoid seed coatings in reducing subsequent applications of foliar insecticide sprays and increasing crop yield are not known, despite the supposed benefits of this practice driving widespread use. Here, we combine large-scale pesticide usage and yield observations from oilseed rape with those detailing honey bee colony losses over an 11 year period, and reveal a correlation between honey bee colony losses and national-scale imidacloprid (a neonicotinoid) usage patterns across England and Wales. We also provide the first evidence that farmers who use neonicotinoid seed coatings reduce the number of subsequent applications of foliar insecticide sprays and may derive an economic return. Our results inform the societal discussion on the pollinator costs and farming benefits of prophylactic neonicotinoid usage on a mass flowering crop.

Concepts: Insect, Beekeeping, Pollination, Flower, Pollinator decline, Insecticide, Neonicotinoid, Imidacloprid


Growing evidence for declines in bee populations has caused great concern because of the valuable ecosystem services they provide. Neonicotinoid insecticides have been implicated in these declines because they occur at trace levels in the nectar and pollen of crop plants. We exposed colonies of the bumble bee Bombus terrestris in the laboratory to field-realistic levels of the neonicotinoid imidacloprid, then allowed them to develop naturally under field conditions. Treated colonies had a significantly reduced growth rate and suffered an 85% reduction in production of new queens compared with control colonies. Given the scale of use of neonicotinoids, we suggest that they may be having a considerable negative impact on wild bumble bee populations across the developed world.

Concepts: Honey bee, Pollination, Pollinator decline, Bee, Bumblebee, Insecticide, Neonicotinoid, Imidacloprid


Growing evidence for global pollinator decline is causing concern for biodiversity conservation and ecosystem services maintenance. Neonicotinoid pesticides have been identified or suspected as a key factor responsible for this decline. We assessed the global exposure of pollinators to neonicotinoids by analyzing 198 honey samples from across the world. We found at least one of five tested compounds (acetamiprid, clothianidin, imidacloprid, thiacloprid, and thiamethoxam) in 75% of all samples, 45% of samples contained two or more of these compounds, and 10% contained four or five. Our results confirm the exposure of bees to neonicotinoids in their food throughout the world. The coexistence of neonicotinoids and other pesticides may increase harm to pollinators. However, the concentrations detected are below the maximum residue level authorized for human consumption (average ± standard error for positive samples: 1.8 ± 0.56 nanograms per gram).

Concepts: Biodiversity, Pollinator decline, Bee, Bumblebee, Pollinator, Insecticide, Neonicotinoid, Imidacloprid effects on bee population


Despite widespread interest in the potential adaptive value of individual differences in cognition, few studies have attempted to address the question of how variation in learning and memory impacts their performance in natural environments. Using a novel split-colony experimental design we evaluated visual learning performance of foraging naïve bumble bees (Bombus terrestris) in an ecologically relevant associative learning task under controlled laboratory conditions, before monitoring the lifetime foraging performance of the same individual bees in the field. We found appreciable variation among the 85 workers tested in both their learning and foraging performance, which was not predicted by colony membership. However, rather than finding that foragers benefited from enhanced learning performance, we found that fast and slow learners collected food at comparable rates and completed a similar number of foraging bouts per day in the field. Furthermore, bees with better learning abilities foraged for fewer days; suggesting a cost of enhanced learning performance in the wild. As a result, slower learning individuals collected more resources for their colony over the course of their foraging career. These results demonstrate that enhanced cognitive traits are not necessarily beneficial to the foraging performance of individuals or colonies in all environments.

Concepts: Psychology, Natural environment, Honey bee, Pollinator decline, Bee, Bumblebee, Apidae, Pollinators


Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30-52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to bee population declines.

Concepts: Honey bee, Pollination, Flower, Pollinator decline, Pollination syndrome, Bee, Bumblebee, Pollinator