Discover the most talked about and latest scientific content & concepts.

Concept: Plant propagation


Elements of micropropagation include establishment of shoot tip cultures, proliferation, rooting, and acclimatization of the resulting plantlets. The wide genetic variation in Pyrus makes micropropagation challenging for many genotypes. Initiation of shoots is most successful from forced dormant shoots or from scions grafted onto seedling rootstocks to impose juvenility. Clean shoots are recovered after testing for contaminants at the initiation stage on ½ strength Murashige and Skoog 1962 medium (MS), at pH 6.9 for 1 week or by streaking on nutrient agar. Although pear species and cultivars are cultured on several well-known media, MS is the most commonly used. Our studies showed that multiplication and growth of shoots are best on Pear Medium with higher concentrations of calcium chloride, potassium phosphate, and magnesium sulfate than MS medium and 4.4 μM N(6) benzyladenine. Pear shoots are often recalcitrant to rooting; however, a 5 s dip in 10 mM indole-3-butyric acid or naphthalene acetic acid before planting on basal medium without plant growth regulators is effective for many genotypes. Pear shoots store well at 1-4°C, and can hold for as long as 4 years without reculture. Cryopreservation protocols are available for long-term storage of pear shoot tips. Acclimation of in vitro-rooted or micrografted shoots in a mist bed follows standard procedures.

Concepts: Plant hormone, Agar, Shoot, Salt, Grafting, Rootstock, Plant propagation, Plant reproduction


Jojoba (Simmondsia chinensis (Link) Schn.) is a nontraditional crop in arid and semi-arid areas. Vegetative propagation can be achieved by layering, grafting, or rooting semi-hardwood cuttings, but the highest number of possible propagules is limited by the size of the plants and time of the year. Micropropagation is highly recommended strategy for obtaining jojoba elite clones. For culture initiation, single-node explants are cultivated on Murashige and Skoog medium (MS) supplemented with Gamborg’s vitamins (B5), 11.1 μM BA (N(6)-benzyl-adenine), 0.5 μM IBA (indole-3-butyric acid), and 1.4 μM GA(3) (gibberellic acid). Internodal and apical cuttings proliferate on MS medium containing B5 vitamins and 4.4 μM BA. Rooting is achieved on MS medium (half strength mineral salt) amended with B5 vitamins and 14.7 μM IBA during 7 days and transferred to develop in auxin-free rooting medium. Plantlets are acclimatized using a graduated humidity regime on soil: peat: perlite (5:1:1) substrate. This micropagation protocol produces large numbers of uniform plants from selected genotypes of jojoba.

Concepts: Grafting, Perlite, Vegetative reproduction, Jojoba, Horticulture and gardening, Plant propagation, Seed, Plant reproduction


Olive (Olea europaea L.), long-living, ever-green fruit tree of the Old World, has been part of a traditional landscape in the Mediterranean area for centuries. Both the fruits consumed after processing and the oil extracted from the fruits are among the main components of the Mediterranean diet, widely used for salads and cooking, as well as for preserving other food. Documentations show that the ancient use of this beautiful tree also includes lamp fuel production, wool treatment, soap production, medicine, and cosmetics. However, unlike the majority of the fruit species, olive propagation is still a laborious practice. As regards traditional propagation, rooting of cuttings and grafting stem segments onto rootstocks are possible, former being achieved only when the cuttings are collected in specific periods (spring or beginning of autumn), and latter only when skilled grafters are available. In both the cases, performance of the cultivars varies considerably. The regeneration of whole plants from ovules, on the other hand, is used only occasionally. Micropropagation of olive is not easy mainly due to explant oxidation, difficulties in explant disinfection, and labor-oriented establishment of in vitro shoot cultures. However today, the progress in micropropagation technology has made available the complete protocols for several Mediterranean cultivars. This chapter describes a micropropagation protocol based on the segmentation of nodal segments obtained from elongated shoots.

Concepts: Plant propagation, Greece, Mediterranean diet, Mediterranean Basin, Olive oil, Grafting, Fruit, Olive


The Vaccinium genus contains several valuable fruit and ornamental species, among others: highbush blueberry (Vaccinium × corymbosum L.), cranberry (Vaccinium macrocarpon Ait.), and lingonberry (Vaccinium vitis-idaea L.). In some most popular and valuable cultivars, the conventional propagation methods, exploiting hard or soft wood cuttings, are inefficient. The demand for nursery plants could be fulfilled only by micropropagation. In principle cultivars are propagated in vitro through similar three-stage method, based on subculture of shoot explants on different culture media supplemented with IAA (0-4 mg/L) and 2iP (5-10 mg/L), and rooting shoots in vivo. The obtained plantlets are transferred to peat substrate and grown in the glasshouse until the end of growing period. The development of adventitious shoots should be monitored and controlled during in vitro stages. Many clones have specific requirements for growing conditions and/or are recalcitrant.

Concepts: Ericaceae, Propagation, In vitro, Plant propagation, Cranberry, Vaccinium vitis-idaea, Blueberry, Vaccinium


The black chokeberry-aronia (Aronia melanocarpa Elliot) is a shrub native to North America although nowadays well known in Eastern Europe. The fruits are regarded as the richest source of antioxidant phytonutrients among fruit crops and vegetables. Chokeberries can be easily propagated by seeds but this method is not recommended. Micropropagation is far more efficient than other conventional cloning methods like layering or softwood cuttings. Aronia clones are propagated in vitro through four- or three-stage method based on subculturing of shoot explants. The double diluted MS or full strength MS medium with elevated 50% Ca(2+) and Mg(2+) content are used in the initiation and proliferation chokeberry in vitro cultures, respectively. They are supplemented with 0.5-1.0 mg LBA, and 0.05 mg LIBA. The double-phase medium is recommended in the last passage before shoot rooting. The regenerated shoots could be rooted both in vitro on double diluted MS with 0.05 mg L(-1) IBA or in vivo in peat and perlite substrate and subsequently grown in the greenhouse.

Concepts: Fruit, Accessory fruit, Plant propagation, Photinia, Shrub, Aronia


Lavandula species are some of the most popular ornamental and medicinal plants with great economic values. These species are vegetative propagated by stem cuttings. However, the poor rooting ability and vulnerability of plantlets to contamination are major limiting factors for propagation. In vitro culture methods are suitable to overcome these limitations. This chapter describes protocols for in vitro propagation of Lavandula viridis L'Hér and Lavandula vera DC. Nodal shoot proliferation of L. viridis and plant regeneration from leaf-derived callus of L. vera by an “open culture system” are highlighted.

Concepts: Popular culture, Plant propagation, Lavandula, Perennial plant, Lavandula angustifolia, Plant, Culture, Lavender


Blends of entirely bio-sourced polymers, namely polylactide (PLA) and starch, have been melt-compounded by lab-scale co-extruder with castor oil (CO) as a plasticizer. The enrichment of castor oil on starch had great effect on the properties of the blends. If the castor oil was mainly dispersed in PLA matrix, the properties of the blends were poor, but when the hexamethylenediisocyanate (HDI) was grafted on starch granules the ready reactions between the hydroxyl on CO and the isocyante on the HDI-grafted starch (HGSTs) brought CO molecules enriched on starch particles. DSC analysis shows that the CO layer on starch has a positive effect on the crystallization of PLA in the ternary blend. The accumulation of CO on starch greatly improves the toughness and impact strength of PLA/starch blends. The grafting content of HDI on the starch granules primarily determined the compatibility and properties of the resulted blends.

Concepts: Grafting, Castor oil, Plant propagation, Lubricant, Differential scanning calorimetry, Wax, Plant reproduction


Adventitious rooting, whereby roots form from non-root tissues, is critical to the forestry and horticultural industries that depend on propagating plants from cuttings. A major problem is that age of the tissue affects the ability of the cutting to form adventitious roots. Here, a model system has been developed using Pisum sativum to differentiate between different interpretations of ageing. It is shown that the decline in adventitious rooting is linked to the ontogenetic switch from vegetative to floral and is mainly attributed to the cutting base. Using rms mutants it is demonstrated that the decline is not a result of increased strigolactones inhibiting adventitious root formation. Monitoring endogenous levels of a range of other hormones including a range of cytokinins in the rooting zone revealed that a peak in jasmonic acid is delayed in cuttings from floral plants. Additionally, there is an early peak in indole-3-acetic acid levels 6h post excision in cuttings from vegetative plants, which is absent in cuttings from floral plants. These results were confirmed using DR5:GUS expression. Exogenous supplementation of young cuttings with either jasmonic acid or indole-3-acetic acid promoted adventitious rooting, but neither of these hormones was able to promote adventitious rooting in mature cuttings. DR5:GUS expression was observed to increase in juvenile cuttings with increasing auxin treatment but not in the mature cuttings. Therefore, it seems the vegetative to floral ontogenetic switch involves an alteration in the tissue’s auxin homeostasis that significantly reduces the indole-3-acetic acid pool and ultimately results in a decline in adventitious root formation.

Concepts: Fruit, Auxin, Tissue, Grafting, Seed, Plant propagation, Root, Plant hormone


A new effective surface poly(1-vinyl-2-pyrrolidone) (PVP) grafted layer protected selective etching strategy has been used for preparing vinyl functionalized porous silica nanospheres (V-PSNSs). The main reaction mechanism was relied on the vinyl groups distributed on the surface of outer vinyl silica nanospheres (V-SiO2) which can be polymerized with another vinyl monomer, such as 1-vinyl-2-pyrrolidone (VP), in the presence of initiator. It was observed from the research results that only grafting PVP on the surface of outer vinyl silica nanospheres (V-SiO2) can V-PSNSs be obtained, because grafting PVP was able to protect outer V-SiO2 from being etched prior to inner pure silica (sSiO2). In addition, effect of the amounts of sSiO2@V-SiO2 as another monomer substrate on the formation of PVP grafted sSiO2@V-SiO2 (sSiO2@V-SiO2/PVP) was discussed. The results showed that the less of the sSiO2@V-SiO2 amounts, the thinner of the PVP grafted layer on the surface of sSiO2@V-SiO2, the poorer protection ability of the surface. In the present study, V-PSNSs with 29 m2g-1 of BET surface areas and 0.1 cm3g-1 pore volumes were successfully synthesized by grafting 0.3 g of VP on the surface of 0.3 g of sSiO2@V-SiO2 and subsequent etching.

Concepts: Etching, Effectiveness, Interior, Grafting, Plant propagation, Plant reproduction, Protection, Vinyl


Clonal propagation plays a critical integral role in the growth and success of a global multi-billion dollar horticulture industry through a constant supply of healthy stock plants. The supply chain depends on continuously improving the micropropagation process, thus, understanding the physiology of in vitro plants remains a core component. We evaluated the influence of exogenously applied cytokinins (CKs, N6-benzyladenine = BA, isopentenyladenine = iP, meta-topolin = mT, 6-(3-hydroxybenzylamino)-9-(tetrahydropyran-2-yl)purine = mTTHP) in Murashige and Skoog (MS)-supplemented media on organogenic response and accumulation of endogenous CK and indole-3-acetic acid (IAA) metabolites. The highest shoot proliferation (30 shoots/explant) was obtained with 20 μM mT treatment. However, the best quality regenerants were produced in 10 μM mT treatment. Rooting of Amelanchier alnifolia in vitro plantlets was observed at the lowest CK concentrations, with the highest root proliferation (3 roots/explant) in 1 μM mTTHP regenerants. Similar to the organogenic response, high levels of endogenous bioactive CK metabolites (free bases, ribosides, and nucleotides) were detected in mT and mTTHP-derived regenerants. The level of O-glucosides was also comparatively high in these cultures. All CK-treated plants had high levels of endogenous free IAA compared to the control. This may suggest an influence of CKs on biosynthesis of IAA.

Concepts: Horticulture, In vitro, Metabolism, Berries, Plant propagation, Amelanchier, Amelanchier alnifolia