SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Plant pathogens and diseases

175

Plants have evolved intracellular immune receptors to detect pathogen proteins known as effectors. How these immune receptors detect effectors remains poorly understood. Here we describe the structural basis for direct recognition of AVR-Pik, an effector from the rice blast pathogen, by the rice intracellular NLR immune receptor Pik. AVR-PikD binds a dimer of the Pikp-1 HMA integrated domain with nanomolar affinity. The crystal structure of the Pikp-HMA/AVR-PikD complex enabled design of mutations to alter protein interaction in yeast and in vitro, and perturb effector-mediated response both in a rice cultivar containing Pikp and upon expression of AVR-PikD and Pikp in the model plant Nicotiana benthamiana. These data reveal the molecular details of a recognition event, mediated by a novel integrated domain in an NLR, which initiates a plant immune response and resistance to rice blast disease. Such studies underpin novel opportunities for engineering disease resistance to plant pathogens in staple food crops.

Concepts: Immune system, Protein, Bacteria, Molecular biology, Signal transduction, Fungus, Rice, Plant pathogens and diseases

171

Antimicrobial peptides are a potent group of defense active molecules that have been utilized in developing resistance against a multitude of plant pathogens. Floral defensins constitute a group of cysteine-rich peptides showing potent growth inhibition of pathogenic filamentous fungi especially Fusarium oxysporum in vitro. Full length genes coding for two Petunia floral defensins, PhDef1 and PhDef2 having unique C-terminal 31 and 27 amino acid long predicted prodomains, were overexpressed in transgenic banana plants using embryogenic cells as explants for Agrobacterium-mediated genetic transformation. High level constitutive expression of these defensins in elite banana cv. Rasthali led to significant resistance against infection of Fusarium oxysporum f. sp. cubense as shown by in vitro and ex vivo bioassay studies. Transgenic banana lines expressing either of the two defensins were clearly less chlorotic and had significantly less infestation and discoloration in the vital corm region of the plant as compared to untransformed controls. Transgenic banana plants expressing high level of full-length PhDef1 and PhDef2 were phenotypically normal and no stunting was observed. In conclusion, our results suggest that high-level constitutive expression of floral defensins having distinctive prodomains is an efficient strategy for development of fungal resistance in economically important fruit crops like banana.

Concepts: Gene, Bacteria, Amino acid, Fungus, Fusarium oxysporum, Fruit, Plant pathogens and diseases, Banana

170

BACKGROUND: The gene encoding PAD4 (PHYTOALEXIN-DEFICIENT4) is required in Arabidopsis for expression of several genes involved in the defense response to Pseudomonas syringae pv. maculicola. AtPAD4 (Arabidopsis thaliana PAD4) encodes a lipase-like protein that plays a regulatory role mediating salicylic acid signaling. RESULTS: We expressed the gene encoding AtPAD4 in soybean roots of composite plants to test the ability of AtPAD4 to deter plant parasitic nematode development. The transformed roots were challenged with two different plant parasitic nematode genera represented by soybean cyst nematode (SCN; Heterodera glycines) and root-knot nematode (RKN; Meloidogyne incognita). Expression of AtPAD4 in soybean roots decreased the number of mature SCN females 35 days after inoculation by 68 percent. Similarly, soybean roots expressing AtPAD4 exhibited 77 percent fewer galls when challenged with RKN. CONCLUSIONS: Our experiments show that AtPAD4 can be used in an economically important crop, soybean, to provide a measure of resistance to two different genera of nematodes.

Concepts: Parasites, Nematode, Model organism, Nematodes, Plant pathogens and diseases, Pseudomonas syringae, Root-knot nematode, Heterodera

169

In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici) and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM) mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew) became more favourable for another pest (aphids).

Concepts: Plant, Fungus, Experiment, Hemiptera, Plant pathogens and diseases, Aphid, Blumeria graminis, Powdery mildew

166

Strain HA10002 was isolated from mangrove sediment collected from Dongzhaigang Mangrove Reserve in Hainan, China. It was selected with potent nematicidal activity and was identified as Streptomyces albogriseolus. By bioassay-guided fractionation, a new active component A22-1(S1) against root-knot nematodes was separated from its fermentation broth. On the basis of spectroscopic analyses and comparison with the data from correlative literature, the structure of S1 was established to be 6'-methyl-fungichromin, named as fungichromin B in this paper. The LD50 values of fungichromin B to the 2-stage juveniles of Meloidogyne incognita and Meloidogyne javanica were 7.64 and 7.83 μg/ml, respectively. Further examination demonstrated fungichromin B still showed a wide antifungal spectrum, as with fungichromin.

Concepts: Nematodes, Plant pathogens and diseases, Root-knot nematode, Meloidogyne incognita, Meloidogyne

163

Solanum torvum Sw is worldwide employed as rootstock for eggplant cultivation because of its vigour and resistance/tolerance to the most serious soil-borne diseases as bacterial, fungal wilts and root-knot nematodes. The little information on Solanum torvum (hereafter Torvum) resistance mechanisms, is mostly attributable to the lack of genomic tools (e.g. dedicated microarray) as well as to the paucity of database information limiting high-throughput expression studies in Torvum.

Concepts: Parasites, Nematode, Nematodes, Solanum, Plant pathogens and diseases, Root-knot nematode, Meloidogyne incognita, Meloidogyne

160

Phytoplasmas have the smallest genome among bacteria and lack many essential genes required for biosynthetic and metabolic functions, making them unculturable, phloem-limited plant pathogens. In this study, we observed that transgenic Arabidopsis thaliana expressing the secreted effector protein SAP11AYWB of the Aster Yellows phytoplasma strain Witches' Broom (AY-WB) shows an altered root architecture, similarly to the disease symptoms of phytoplasma-infected plants, by forming hairy roots. This morphological change is paralleled by an accumulation of cellular Pi and an increase in the expression levels of Pi starvation-induced genes and miRNAs. In addition to the Pi starvation responses, we found that SAP11AYWB suppresses salicylic acid-mediated defense responses and enhances the growth of a bacterial pathogen. These results contribute to an improved understanding of the role of phytoplasma effector SAP11 and provide new insights for understanding the molecular basis of plant-pathogen interactions.

Concepts: DNA, Gene expression, Bacteria, Molecular biology, Metabolism, Genome, Phytoplasma, Plant pathogens and diseases

150

Rice blast disease caused by the fungus, Magnaporthe oryzae, is one of the most devastating diseases of rice. Deciphering molecular mechanism of host-pathogen interactions is of great importance in devising disease management strategies. Transcription being the first step for gene regulation in eukaryotes, basic understanding of the transcriptome is sine qua non for devising effective management strategy. The availability of genome sequences of rice and M. oryzae has facilitated the process to a large extent. The current review summarizes recent understanding of rice-blast pathosystem, application of transcriptomics approaches to understand the interactions employing different platforms, major determinants in the interaction and possibility of using certain candidate for conditioning enhanced disease resistance (Effector Triggered Immunity and PAMP Triggered Immunity) and downstream signalling in rice. A better understanding of the interaction elements and effective strategies hold potential to reduce yield losses in rice caused by M. oryzae.

Concepts: DNA, Gene expression, RNA, Fungus, Plant pathogens and diseases, Magnaporthe grisea, Sordariomycetes

34

Phytophthora infestans (Mont.) de Bary, the causal agent of potato late blight, was responsible for the Irish potato famine of the 1840s. Initial disease outbreaks occurred in the US in 1843, two years prior to European outbreaks. We examined the evolutionary relationships and source of the 19th-century outbreaks using herbarium specimens of P. infestans from historic (1846-1970) and more recent isolates (1992-2014) of the pathogen. The same unique SSR multilocus genotype, named here as FAM-1, caused widespread outbreaks in both US and Europe. The FAM-1 lineage shared allelic diversity and grouped with the oldest specimens collected in Colombia and Central America. The FAM-1 lineage of P. infestans formed a genetic group that was distinct from more recent aggressive lineages found in the US. The US-1 lineage formed a second, mid-20th century group. Recent modern US lineages and the oldest Mexican lineages formed a genetic group with recent Mexican lineages, suggesting a Mexican origin of recent US lineages. A survey of mitochondrial haplotypes in a larger set of global herbarium specimens documented the more frequent occurrence of the HERB-1 (type Ia) mitochondrial haplotype in archival collections from 1866-75 and 1906-1915 and the rise of the Ib mitochondrial lineage (US-1) between 1946-1955. The FAM-1 SSR lineage survived for almost 100 years in the US, was geographically widespread, and was displaced first in the mid-20th century by the US-1 lineage and then by distinct new aggressive lineages that migrated from Mexico.

Concepts: Evolution, Potato, Plant pathogens and diseases, Oomycete, Phytophthora infestans, Great Famine, Potatoes, Phytophthora

28

Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is a devastating disease of rice worldwide. The qualitative or pathogen race-specific resistance to this pathogen conferred by major disease resistance (MR) genes has been widely used in rice improvement. Accumulating genetic and molecular data have revealed that the molecular mechanisms of rice qualitative resistance to Xoo are largely different from those of qualitative resistance in other plant-pathogen pathosystems. In this review, we focus on the unique features of rice qualitative resistance to Xoo based on MR genes that have been identified and characterized. The distinctiveness of the rice-Xoo interaction provides a unique pathosystem to elucidate the diverse molecular mechanisms in plant qualitative resistance.

Concepts: DNA, Genetics, Genetic disorder, Bacteria, Organism, Genome, Plant pathogens and diseases, Xanthomonas oryzae