SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Plant cell

189

Plants are able to sense the magnitude and direction of gravity. This capacity is thought to reside in selected cell types within the plant body that are equipped with specialized organelles called statoliths. However, most plant cells do not possess statoliths, yet they respond to changes in gravitational acceleration. To understand the effect of gravity on the metabolism and cellular functioning of non-specialized plant cells, we investigated a rapidly growing plant cell devoid of known statoliths and without gravitropic behavior, the pollen tube. The effects of hyper-gravity and omnidirectional exposure to gravity on intracellular trafficking and on cell wall assembly were assessed in Camellia pollen tubes, a model system with highly reproducible growth behavior in vitro. Using an epi-fluorescence microscope mounted on the Large Diameter Centrifuge at the European Space Agency, we were able to demonstrate that vesicular trafficking is reduced under hyper-gravity conditions. Immuno-cytochemistry confirmed that both in hyper and omnidirectional gravity conditions, the characteristic spatial profiles of cellulose and callose distribution in the pollen tube wall were altered, in accordance with a dose-dependent effect on pollen tube diameter. Our findings suggest that in response to gravity induced stress, the pollen tube responds by modifying cell wall assembly to compensate for the altered mechanical load. The effect was reversible within few minutes demonstrating that the pollen tube is able to quickly adapt to changing stress conditions.

Concepts: Photosynthesis, Cell, Plastid, Eukaryote, Cell biology, Cell wall, Vacuole, Plant cell

176

The cell walls in plants are made up of just four basic building blocks: cellulose (the main structural fibre of the plant kingdom) hemicellulose, lignin and pectin. Although the microstructure of plant cell walls varies in different types of plants, broadly speaking, cellulose fibres reinforce a matrix of hemicellulose and either pectin or lignin. The cellular structure of plants varies too, from the largely honeycomb-like cells of wood to the closed-cell, liquid-filled foam-like parenchyma cells of apples and potatoes and to composites of these two cellular structures, as in arborescent palm stems. The arrangement of the four basic building blocks in plant cell walls and the variations in cellular structure give rise to a remarkably wide range of mechanical properties: Young’s modulus varies from 0.3 MPa in parenchyma to 30 GPa in the densest palm, while the compressive strength varies from 0.3 MPa in parenchyma to over 300 MPa in dense palm. The moduli and compressive strength of plant materials span this entire range. This study reviews the composition and microstructure of the cell wall as well as the cellular structure in three plant materials (wood, parenchyma and arborescent palm stems) to explain the wide range in mechanical properties in plants as well as their remarkable mechanical efficiency.

Concepts: Eukaryote, Plant, Fungus, Cell wall, Lignin, Cellulose, Wood, Plant cell

28

Exploitation of plant lignocellulosic biomass is hampered by our ignorance of the molecular basis for its properties such as strength and digestibility. Xylan, the most prevalent non-cellulosic polysaccharide, binds to cellulose microfibrils. The nature of this interaction remains unclear, despite its importance. Here we show that the majority of xylan, which forms a threefold helical screw in solution, flattens into a twofold helical screw ribbon to bind intimately to cellulose microfibrils in the cell wall. (13)C solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, supported by in silico predictions of chemical shifts, shows both two- and threefold screw xylan conformations are present in fresh Arabidopsis stems. The twofold screw xylan is spatially close to cellulose, and has similar rigidity to the cellulose microfibrils, but reverts to the threefold screw conformation in the cellulose-deficient irx3 mutant. The discovery that induced polysaccharide conformation underlies cell wall assembly provides new principles to understand biomass properties.

Concepts: Cell, Bacteria, Nuclear magnetic resonance, Cell wall, Polysaccharide, Lignin, Cellulose, Plant cell

28

Specialised plant cell types often locally modify their cell walls as part of a developmental program, as do cells that are challenged by particular environmental conditions. Modifications can include deposition of secondary cellulose, callose, cutin, suberin or lignin. Although the biosyntheses of cell wall components are more and more understood, little is known about the mechanisms that control localised deposition of wall materials. During metaxylem vessel differentiation, site-specific cell wall deposition is locally prevented by the microtubule depolymerising protein MIDD1, which disassembles the cytoskeleton and precludes the cellulose synthase complex from depositing cellulose. As a result, metaxylem vessel secondary cell wall appears pitted. How MIDD1 is tethered at the plasma membrane and how other cell wall polymers are locally deposited remain elusive. Casparian strips in the root endodermis represent a further example of local cell wall deposition. The recent discovery of the Casparian Strip membrane domain Proteins (CASPs), which are located at the plasma membrane and are important for the site-specific deposition of lignin during Casparian strip development, establishes the root endodermis as an attractive model system to study the mechanisms of localised cell wall modifications. How secondary modifications are modulated and monitored during development or in response to environmental changes is another question that still misses a complete picture.

Concepts: Protein, Cell, Bacteria, Cell membrane, Cell wall, Cellulose, Plant cell, Suberin

28

Computational modeling of growing plant tissues raises two basic questions about plant cell division: when does a cell decide to divide and where is the new wall placed? Although biologists and modelers commonly assume that a cell divides after it reaches a threshold size, two recent experiments show that models with variable division sizes better replicate the tissue. Similarly, comparing model predictions with living plant cells reveals that the choice of division plane is variable, although the shortest path dividing a cell in half (i.e. the minimal surface area) is the most probable division plane.

Concepts: Cell, Plastid, Eukaryote, Cell wall, Model, Vacuole, Plant cell, Continental divide

28

The degradation of the plant cell wall by glycoside hydrolases is central to environmentally sustainable industries. The major polysaccharides of the plant cell wall are cellulose and xylan, a highly decorated β-1,4-xylopyranose polymer. Glycoside hydrolases displaying multiple catalytic functions may simplify the enzymes required to degrade plant cell walls, increasing the industrial potential of these composite structures. Here we test the hypothesis that glycoside hydrolase family 43 (GH43) provides a suitable scaffold for introducing additional catalytic functions into enzymes that target complex structures in the plant cell wall. We report the crystal structure of Humicola insolens AXHd3 (HiAXHd3), a GH43 arabinofuranosidase that hydrolyses O3-linked arabinose of doubly substituted xylans, a feature of the polysaccharide that is recalcitrant to degradation. HiAXHd3 displays an N-terminal five-bladed β-propeller domain and a C-terminal β-sandwich domain. The interface between the domains comprises a xylan binding cleft that houses the active site pocket. Substrate specificity is conferred by a shallow arabinose binding pocket adjacent to the deep active site pocket, and through the orientation of the xylan backbone. Modification of the rim of the active site introduces endo-xylanase activity, whereas the resultant enzyme variant, Y166A, retains arabinofuranosidase activity. These data show that the active site of HiAXHd3 is tuned to hydrolyse arabinofuranosyl or xylosyl linkages, and it is the topology of the distal regions of the substrate binding surface that confers specificity. This report demonstrates that GH43 provides a platform for generating bespoke multifunctional enzymes that target industrially significant complex substrates, exemplified by the plant cell wall.

Concepts: Cell, Bacteria, Enzyme, Cell wall, Polysaccharide, Lignin, Cellulose, Plant cell

27

Extraction of hyaluronan from animals or microbial fermentation has risks including contamination with pathogens and microbial toxins. In this work, tobacco cultured-cells (BY-2) were successfully transformed with a chloroviral hyaluronan synthase (cvHAS) gene to produce hyaluronan. Cytological studies revealed accumulation of HA on the cells, and also in subcellular fractions (protoplasts, miniplasts, vacuoplasts, and vacuoles). Transgenic BY-2 cells harboring a vSPO-cvHAS construct containing the vacuolar targeting signal of sporamin connected to the N-terminus of cvHAS accumulated significant amounts of HA in vacuoles. These results suggested that cvHAS successfully functions on the vacuolar membrane and synthesizes/transports HA into vacuoles. Efficient synthesis of HA using this system provides a new method for practical production of HA. Biotechnol. Bioeng. © 2012 Wiley Periodicals, Inc.

Concepts: Protein, Cell, Bacteria, Molecular biology, Microbiology, Organelle, Vacuole, Plant cell

27

Arabinogalactan-proteins are glycoproteins that occur in higher plants and are involved in important processes like cell differentiation and plant growth. In the medicinal plant Echinacea purpurea L., they belong to the putative immunomodulating compounds and are structurally well characterized. For microscopic localization of arabinogalactan-proteins, synthetic (β-D-Glc)3 Yariv phenylglycoside that specifically binds to most plant arabinogalactan-proteins was used to label arabinogalactan-proteins in fresh cut sections of stems and petioles of Echinacea purpurea. Polyclonal antibodies against (β-D-Glc)3 Yariv phenylglycoside were used to detect the arabinogalactan-protein-(β-D-Glc)3 Yariv phenylglycoside complex. After addition of fluorescein isothiocyanate-conjugated secondary antibodies, the sections were analyzed by confocal laser scanning microscopy. Arabinogalactan-proteins are localized mainly in the central cylinder in the collateral vascular bundles, especially in the area of the xylem. In cell walls of fully differentiated vessels and tracheids, arabinogalactan-proteins have been detected mainly at the inner area of the wall close to the cell lumina. Intense labeling occurs around pit canals connecting adjacent vessels. Furthermore, arabinogalactan-proteins are present in the lumina of cells of the sclerenchyma caps and in companion cells of the phloem.

Concepts: Plant, Cell wall, Vascular plant, Plant physiology, Plant anatomy, Xylem, Meristem, Plant cell

26

A central question in plant cell development is how the cell wall determines directional cell expansion and therefore the final shape of the cell. As the major load-bearing component of the cell wall, cellulose microfibrils are laid down transversely to the axis of elongation, thus forming a spring-like structure that reinforces the cell laterally and while favoring longitudinal expansion in most growing cells. Mounting evidence suggests that cortical microtubules organize the deposition of cellulose microfibrils, but the precise molecular mechanisms linking microtubules to cellulose organization have remained unclear until the recent discovery of cellulose synthase interactive protein 1 , a linker protein between the cortical microtubules and the cellulose biosynthesizing machinery. In this review, we will focus on the intimate relationship between cellulose microfibrils and cortical microtubules, in particular, we will discuss microtubule arrangement and cell wall architecture, the linkage between cellulose synthase complexes and microtubules, and the feedback mechanisms between cell wall and microtubules.

Concepts: DNA, Gene, Cell, Eukaryote, Cell wall, Interpersonal relationship, Cellulose, Plant cell

26

Vacuolar programmed cell death (PCD) is indispensable for plant development and is accompanied by a dramatic growth of lytic vacuoles, which gradually digest cytoplasmic content leading to self-clearance of dying cells. Our recent data demonstrate that vacuolar PCD critically requires autophagy and its upstream regulator, a caspase-fold protease metacaspase. Furthermore, both components lie downstream of the point of no return in the cell-death pathway. Here we consider the possibilities that i) autophagy could have both cytotoxic and cytoprotective roles in the vacuolar PCD, and ii) metacaspase could augment autophagic flux through targeting an as yet unknown autophagy repressor.

Concepts: Protein, Cell, Eukaryote, Organelle, Cytoplasm, Programmed cell death, Vacuole, Plant cell