Discover the most talked about and latest scientific content & concepts.

Concept: Planarian


Regeneration is regulated not only by chemical signals but also by physical processes, such as bioelectric gradients. How these may change in the absence of the normal gravitational and geomagnetic fields is largely unknown. Planarian flatworms were moved to the International Space Station for 5 weeks, immediately after removing their heads and tails. A control group in spring water remained on Earth. No manipulation of the planaria occurred while they were in orbit, and space-exposed worms were returned to our laboratory for analysis. One animal out of 15 regenerated into a double-headed phenotype-normally an extremely rare event. Remarkably, amputating this double-headed worm again, in plain water, resulted again in the double-headed phenotype. Moreover, even when tested 20 months after return to Earth, the space-exposed worms displayed significant quantitative differences in behavior and microbiome composition. These observations may have implications for human and animal space travelers, but could also elucidate how microgravity and hypomagnetic environments could be used to trigger desired morphological, neurological, physiological, and bacteriomic changes for various regenerative and bioengineering applications.

Concepts: Scientific method, Earth's magnetic field, Regeneration, International Space Station, Flatworm, Planarian


While tissue regeneration is typically studied using standard injury models, in nature injuries vary greatly in the amount and location of tissues lost. Planarians have the unique ability to regenerate from many different injuries (including from tiny fragments with no brain), allowing us to study the effects of different injuries on regeneration timelines. We followed the timing of regeneration for one organ, the eye, after multiple injury types that involved tissue loss (single- and double-eye ablation, and decapitation) in Schmidtea mediterranea. Our data reveal that the timing of regeneration remained constant despite changing injury parameters. Optic tissue regrowth, nerve re-innervation, and functional recovery were similar between injury types (even when the animal was simultaneously regrowing its brain). Changes in metabolic rate (i.e., starving vs. fed regenerates) also had no effect on regeneration timelines. In addition, our data suggest there may exist a role for optic nerve degeneration following eye ablation. Our results suggest that the temporal regulation of planarian eye regeneration is tightly controlled and resistant to variations in injury type.

Concepts: Cellular differentiation, Regeneration, Retina, Eye, Flatworm, Planarian


The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced. Here, we show that after decapitation in G. dorotocephala, a transient perturbation of physiological connectivity among cells (using the gap junction blocker octanol) can result in regenerated heads with quite different shapes, stochastically matching other known species of planaria (S. mediterranea, D. japonica, and P. felina). We use morphometric analysis to quantify the ability of physiological network perturbations to induce different species-specific head shapes from the same genome. Moreover, we present a computational agent-based model of cell and physical dynamics during regeneration that quantitatively reproduces the observed shape changes. Morphological alterations induced in a genomically wild-type G. dorotocephala during regeneration include not only the shape of the head but also the morphology of the brain, the characteristic distribution of adult stem cells (neoblasts), and the bioelectric gradients of resting potential within the anterior tissues. Interestingly, the shape change is not permanent; after regeneration is complete, intact animals remodel back to G. dorotocephala-appropriate head shape within several weeks in a secondary phase of remodeling following initial complete regeneration. We present a conceptual model to guide future work to delineate the molecular mechanisms by which bioelectric networks stochastically select among a small set of discrete head morphologies. Taken together, these data and analyses shed light on important physiological modifiers of morphological information in dictating species-specific shape, and reveal them to be a novel instructive input into head patterning in regenerating planaria.

Concepts: DNA, Gene, Developmental biology, Stem cell, Cellular differentiation, Regeneration, Adult stem cell, Planarian


Light sensing has independently evolved multiple times under diverse selective pressures but has been examined only in a handful among the millions of light-responsive organisms. Unsurprisingly, mechanistic insights into how differential light processing can cause distinct behavioral outputs are limited. We show how an organism can achieve complex light processing with a simple “eye” while also having independent but mutually interacting light sensing networks. Although planarian flatworms lack wavelength-specific eye photoreceptors, a 25 nm change in light wavelength is sufficient to completely switch their phototactic behavior. Quantitative photoassays, eye-brain confocal imaging, and RNA interference/knockdown studies reveal that flatworms are able to compare small differences in the amounts of light absorbed at the eyes through a single eye opsin and convert them into binary behavioral outputs. Because planarians can fully regenerate, eye-brain injury-regeneration studies showed that this acute light intensity sensing and processing are layered on simple light detection. Unlike intact worms, partially regenerated animals with eyes can sense light but cannot sense finer gradients. Planarians also show a “reflex-like,” eye-independent (extraocular/whole-body) response to low ultraviolet A light, apart from the “processive” eye-brain-mediated (ocular) response. Competition experiments between ocular and extraocular sensory systems reveal dynamic interchanging hierarchies. In intact worms, cerebral ocular response can override the reflex-like extraocular response. However, injury-regeneration again offers a time window wherein both responses coexist, but the dominance of the ocular response is reversed. Overall, we demonstrate acute light intensity-based behavioral switching and two evolutionarily distinct but interacting light sensing networks in a regenerating organism.

Concepts: DNA, Natural selection, Light, Regeneration, Sunlight, Sensory system, Flatworm, Planarian


Targeting the cellular Ca(2+) channels and pumps that underpin parasite Ca(2+) homeostasis may realize novel antihelmintic agents. Indeed, the antischistosomal drug praziquantel (PZQ) is a key clinical agent that has been proposed to work in this manner. Heterologous expression data has implicated an action of PZQ on voltage-operated Ca(2+) channels, although the relevant in vivo target of this drug has remained undefined over three decades of clinical use. The purpose of this review is to bring new perspective to this issue by discussing the potential utility of free-living planarian flatworms for providing new insight into the mechanism of PZQ action. First, we discuss in vivo functional genetic data from the planarian system that broadly supports the molecular data collected in heterologous systems and the ‘Ca(2+) hypothesis’ of PZQ action. On the basis of these similarities we highlight our current knowledge of platyhelminth voltage operated Ca(2+) channels, their unique molecular pharmacology and the downstream functional PZQ interactome engaged by dysregulation of Ca(2+) influx that has potential to yield novel antischistosomal targets. Overall the broad dataset underscore a common theme of PZQ-evoked disruptions of Ca(2+) homeostasis in trematodes, cestodes and turbellarians, and showcase the utility of the planarian model for deriving insight into drug action and targets in parasitic flatworms.

Concepts: Schistosomiasis, Schistosoma, Praziquantel, Target Corporation, Flatworm, Anthelmintic, Platyhelminthes, Planarian


Planarian flatworms are a popular system for research into the molecular mechanisms that enable these complex organisms to regenerate their entire body, including the brain. Classical data suggest that they may also be capable of long-term memory. Thus, the planarian system may offer the unique opportunity to study brain regeneration and memory in the same animal. To establish a system for the investigation of the dynamics of memory in a regenerating brain, we developed a computerized training and testing paradigm that avoided the many issues that confounded previous, manual attempts to train planaria. We then used this new system to train flatworms in an environmental familiarization protocol. We show that worms exhibit environmental familiarization, and that this memory persists for at least 14 days - long enough for the brain to regenerate. We further show that trained, decapitated planaria exhibit evidence of memory retrieval in a savings paradigm after regenerating a new head. Our work establishes a foundation for objective, high-throughput assays in this molecularly-tractable model system that will shed light on the fundamental interface between body patterning and stored memories. We propose planaria as a key emerging model species for mechanistic investigations of the encoding of specific memories in biological tissues. Moreover, this system is likely to have important implications for the biomedicine of stem cell-derived treatments of degenerative brain disorders in human adults.

Concepts: Psychology, Biology, Model organism, Regeneration, Memory, Hippocampus, Flatworm, Planarian


Regeneration is widespread, but mechanisms that activate regeneration remain mysterious. Planarians are capable of whole-body regeneration and mount distinct molecular responses to wounds that result in tissue absence and those that do not. A major question is how these distinct responses are activated. We describe a follistatin homolog (Smed-follistatin) required for planarian regeneration. Smed-follistatin inhibition blocks responses to tissue absence but does not prevent normal tissue turnover. Two activin homologs (Smed-activin-1 and Smed-activin-2) are required for the Smed-follistatin phenotype. Finally, Smed-follistatin is wound-induced and expressed at higher levels following injuries that cause tissue absence. These data suggest that Smed-follistatin inhibits Smed-Activin proteins to trigger regeneration specifically following injuries involving tissue absence and identify a mechanism critical for regeneration initiation, a process important across the animal kingdom. DOI:

Concepts: Causality, Regeneration, English-language films, Enzyme inhibitor, Inhibitor, Initiation, Black-and-white films, Planarian


Porphyrias are disorders of heme metabolism frequently characterized by extreme photosensitivity. This symptom results from accumulation of porphyrins, tetrapyrrole intermediates in heme biosynthesis that generate reactive oxygen species when exposed to light, in the skin of affected individuals. Here we report that in addition to producing an ommochrome body pigment, the planarian flatworm Schmidtea mediterranea generates porphyrins in its subepithelial pigment cells under physiological conditions, and that this leads to pigment cell loss when animals are exposed to intense visible light. Remarkably, porphyrin biosynthesis and light-induced depigmentation are enhanced by starvation, recapitulating a common feature of some porphyrias - decreased nutrient intake precipitates an acute manifestation of the disease. Our results establish planarians as an experimentally tractable animal model for research into the pathophysiology of acute porphyrias, and potentially for the identification of novel pharmacological interventions capable of alleviating porphyrin-mediated photosensitivity or decoupling dieting and fasting from disease pathogenesis.

Concepts: Hemoglobin, Mitochondrion, Heme, Melanin, Porphyrin, Flatworm, Porphyria, Planarian


Species capable of regenerating lost body parts occur throughout the animal kingdom, yet close relatives are often regeneration incompetent. Why in the face of ‘survival of the fittest’ some animals regenerate but others do not remains a fascinating question. Planarian flatworms are well known and studied for their ability to regenerate from minute tissue pieces, yet species with limited regeneration abilities have been described even amongst planarians. Here we report the characterization of the regeneration defect in the planarian Dendrocoelum lacteum and its successful rescue. Tissue fragments cut from the posterior half of the body of this species are unable to regenerate a head and ultimately die. We find that this defect originates during the early stages of head specification, which require inhibition of canonical Wnt signalling in other planarian species. Notably, RNA interference (RNAi)-mediated knockdown of Dlac-β-catenin-1, the Wnt signal transducer, restored the regeneration of fully functional heads on tail pieces, rescuing D. lacteum’s regeneration defect. Our results demonstrate the utility of comparative studies towards the reactivation of regenerative abilities in regeneration-deficient animals. Furthermore, the availability of D. lacteum as a regeneration-impaired planarian model species provides a first step towards elucidating the evolutionary mechanisms that ultimately determine why some animals regenerate and others do not.

Concepts: Evolution, Organism, Regeneration, Flatworm, Model organisms, Planarian


The ability to regenerate missing body parts exists throughout the animal kingdom. Positional information is crucial for regeneration, but how it is harboured and used by differentiated tissues is poorly understood. In planarians, positional information has been identified from study of phenotypes caused by RNA interference in which the wrong tissues are regenerated. For example, inhibition of the Wnt signalling pathway leads to regeneration of heads in place of tails. Characterization of these phenotypes has led to the identification of position control genes (PCGs)-genes that are expressed in a constitutive and regional manner and are associated with patterning. Most PCGs are expressed within planarian muscle; however, how muscle is specified and how different muscle subsets affect regeneration is unknown. Here we show that different muscle fibres have distinct regulatory roles during regeneration in the planarian Schmidtea mediterranea. myoD is required for formation of a specific muscle cell subset: the longitudinal fibres, oriented along the anterior-posterior axis. Loss of longitudinal fibres led to complete regeneration failure because of defects in regeneration initiation. A different transcription factor-encoding gene, nkx1-1, is required for the formation of circular fibres, oriented along the medial-lateral axis. Loss of circular fibres led to a bifurcated anterior-posterior axis with fused heads forming in single anterior blastemas. Whereas muscle is often viewed as a strictly contractile tissue, these findings reveal that different muscle types have distinct and specific regulatory roles in wound signalling and patterning to enable regeneration.

Concepts: Gene, Gene expression, RNA, Muscle, Regeneration, Wnt signaling pathway, Planarian