Discover the most talked about and latest scientific content & concepts.

Concept: Pitcher


Hitting a baseball is often described as the most difficult thing to do in sports. A key aptitude of a good hitter is the ability to determine which pitch is coming. This rapid decision requires the batter to make a judgment in a fraction of a second based largely on the trajectory and spin of the ball. When does this decision occur relative to the ball’s trajectory and is it possible to identify neural correlates that represent how the decision evolves over a split second? Using single-trial analysis of electroencephalography (EEG) we address this question within the context of subjects discriminating three types of pitches (fastball, curveball, slider) based on pitch trajectories. We find clear neural signatures of pitch classification and, using signal detection theory, we identify the times of discrimination on a trial-to-trial basis. Based on these neural signatures we estimate neural discrimination distributions as a function of the distance the ball is from the plate. We find all three pitches yield unique distributions, namely the timing of the discriminating neural signatures relative to the position of the ball in its trajectory. For instance, fastballs are discriminated at the earliest points in their trajectory, relative to the two other pitches, which is consistent with the need for some constant time to generate and execute the motor plan for the swing (or inhibition of the swing). We also find incorrect discrimination of a pitch (errors) yields neural sources in Brodmann Area 10, which has been implicated in prospective memory, recall, and task difficulty. In summary, we show that single-trial analysis of EEG yields informative distributions of the relative point in a baseball’s trajectory when the batter makes a decision on which pitch is coming.

Concepts: Discrimination, Baseball, Pitcher, Fastball, Base on balls, Batting average, Curveball, Slider


Throwing injuries are common in high school baseball. Known risk factors include excessive pitch counts, year-round pitching, and pitching with arm pain and fatigue. Despite the evidence, the prevalence of pitching injuries among high school players has not decreased. One possibility to explain this pattern is that players accumulate unaccounted pitch volume during warm-up and bullpen activity, but this has not yet been examined.

Concepts: Scientific method, High school, Baseball, Pitcher, Catcher, Relief pitcher, Starting pitcher, Bullpen


Baseball players must be able to see and react in an instant, yet it is hotly debated whether superior performance is associated with superior sensorimotor abilities. In this study, we compare sensorimotor abilities, measured through 8 psychomotor tasks comprising the Nike Sensory Station assessment battery, and game statistics in a sample of 252 professional baseball players to evaluate the links between sensorimotor skills and on-field performance. For this purpose, we develop a series of Bayesian hierarchical latent variable models enabling us to compare statistics across professional baseball leagues. Within this framework, we find that sensorimotor abilities are significant predictors of on-base percentage, walk rate and strikeout rate, accounting for age, position, and league. We find no such relationship for either slugging percentage or fielder-independent pitching. The pattern of results suggests performance contributions from both visual-sensory and visual-motor abilities and indicates that sensorimotor screenings may be useful for player scouting.

Concepts: Baseball, Baseball statistics, Pitcher, Major League Baseball, Minor league baseball, Batting, Baseball terminology, Barry Bonds



Baseball pitching imposes a dangerous valgus load on the elbow that puts the joint at severe risk for injury. The goal of this study was to develop a musculoskeletal modeling approach to enable evaluation of muscle-tendon contributions to mitigating elbow injury risk in pitching. We implemented a forward dynamic simulation framework that used a scaled biomechanical model to reproduce a pitching motion recorded from a high school pitcher. The medial elbow muscles generated substantial, protective, varus elbow moments in our simulations. For our subject, the triceps generated large varus moments at the time of peak valgus loading; varus moments generated by the flexor digitorum superficialis were larger, but occurred later in the motion. Increasing muscle-tendon force output, either by augmenting parameters associated with strength and power or by increasing activation levels, decreased the load on the ulnar collateral ligament. Published methods have not previously quantified the biomechanics of elbow muscles during pitching. This simulation study represents a critical advancement in the study of baseball pitching and highlights the utility of simulation techniques in the study of this difficult problem.

Concepts: Simulation, Baseball, Pitcher, Fastball, Catcher, Baseball positions, Tommy John surgery, Relief pitcher


Baseball players, specifically pitchers, with symptomatic neurovascular occlusion often initially complain of arm fatigue, loss of ball control, and velocity. As the compression continues complaints may manifest into dull pain, paresthesia, and decreased grip strength.

Concepts: Upper limb, Baseball, Pitcher, Catcher, Batting, Designated hitter, Baseball positions, Pinch hitter


The number of Major League Baseball (MLB) pitchers requiring ulnar collateral ligament (UCL) reconstructions is increasing. Recent literature has attempted to correlate specific stresses placed on the throwing arm to risk for UCL injury, with limited results.

Concepts: Baseball, Pitcher, Major League Baseball, World Series, National League, American League, St. Louis Cardinals, Designated hitter


Post-task resting state dynamics can be viewed as a task-driven state where behavioral performance is improved through endogenous, non-explicit learning. Tasks that have intrinsic value for individuals are hypothesized to produce post-task resting state dynamics that promote learning. We measured simultaneous fMRI/EEG and DTI in Division-1 collegiate baseball players and compared to a group of controls, examining differences in both functional and structural connectivity. Participants performed a surrogate baseball pitch Go/No-Go task before a resting state scan, and we compared post-task resting state connectivity using a seed-based analysis from the supplementary motor area (SMA), an area whose activity discriminated players and controls in our previous results using this task. Although both groups were equally trained on the task, the experts showed differential activity in their post-task resting state consistent with motor learning. Specifically, we found (1) differences in bilateral SMA-L Insula functional connectivity between experts and controls that may reflect group differences in motor learning, (2) differences in BOLD-alpha oscillation correlations between groups suggests variability in modulatory attention in the post-task state, and (3) group differences between BOLD-beta oscillations that may indicate cognitive processing of motor inhibition. Structural connectivity analysis identified group differences in portions of the functionally derived network, suggesting that functional differences may also partially arise from variability in the underlying white matter pathways. Generally, we find that brain dynamics in the post-task resting state differ as a function of subject expertise and potentially result from differences in both functional and structural connectivity. Hum Brain Mapp, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

Concepts: Psychology, Neuroanatomy, Cognition, Cerebral cortex, Cerebellum, Activity, Premotor cortex, Pitcher


Recently, lumbopelvic control has been linked to pitching performance, kinematics, and loading; however, poor lumbopelvic control has not been prospectively investigated as a risk factor for injuries in baseball pitchers.

Concepts: Baseball, Pitcher, Fastball


Sports games are inherently emotional situations, but surprisingly little is known about the social consequences of these emotions. We examined the interpersonal effects of emotional expressions in professional baseball. Specifically, we investigated whether pitchers' facial displays influence how pitches are assessed and responded to. Using footage from the Major League Baseball World Series finals, we isolated incidents where the pitcher’s face was visible before a pitch. A pre-study indicated that participants consistently perceived anger, happiness, and worry in pitchers' facial displays. An independent sample then predicted pitch characteristics and batter responses based on the same perceived emotional displays. Participants expected pitchers perceived as happy to throw more accurate balls, pitchers perceived as angry to throw faster and more difficult balls, and pitchers perceived as worried to throw slower and less accurate balls. Batters were expected to approach (swing) when faced with a pitcher perceived as happy and to avoid (no swing) when faced with a pitcher perceived as worried. Whereas previous research focused on using emotional expressions as information regarding past and current situations, our work suggests that people also use perceived emotional expressions to predict future behavior. Our results attest to the impact perceived emotional expressions can have on professional sports.

Concepts: Psychology, Baseball, Pitcher, Major League Baseball, World Series, National League, Designated hitter, Baseball positions