Discover the most talked about and latest scientific content & concepts.

Concept: Physics of glass


The structural description of disordered systems has been a longstanding challenge in physical science. We propose an atomic cluster alignment method to reveal the development of three-dimensional topological ordering in a metallic liquid as it undercools to form a glass. By analyzing molecular dynamic (MD) simulation trajectories of a Cu(64.5)Zr(35.5) alloy, we show that medium-range order (MRO) develops in the liquid as it approaches the glass transition. Specifically, around Cu sites, we observe “Bergman triacontahedron” packing (icosahedron, dodecahedron and icosahedron) that extends out to the fourth shell, forming an interpenetrating backbone network in the glass. The discovery of Bergman-type MRO from our order-mining technique provides unique insights into the topological ordering near the glass transition and the relationship between metallic glasses and quasicrystals.

Concepts: Scientific method, Iron, Solid, Titanium, Glass, Glass transition, Physics of glass, Icosidodecahedron


While ∼75% of commercially utilized polymers are semicrystalline, the generally low mechanical modulus of these materials, especially for those possessing a glass transition temperature below room temperature, restricts their use for structural applications. Our focus in this paper is to address this deficiency through the controlled, multiscale assembly of nanoparticles (NPs), in particular by leveraging the kinetics of polymer crystallization. This process yields a multiscale NP structure that is templated by the lamellar semicrystalline polymer morphology and spans NPs engulfed by the growing crystals, NPs ordered into layers in the interlamellar zone [spacing of [Formula: see text] (10-100 nm)], and NPs assembled into fractal objects at the interfibrillar scale, [Formula: see text] (1-10 μm). The relative fraction of NPs in this hierarchy is readily manipulated by the crystallization speed. Adding NPs usually increases the Young’s modulus of the polymer, but the effects of multiscale ordering are nearly an order of magnitude larger than those for a state where the NPs are not ordered, i.e., randomly dispersed in the matrix. Since the material’s fracture toughness remains practically unaffected in this process, this assembly strategy allows us to create high modulus materials that retain the attractive high toughness and low density of polymers.

Concepts: Sol-gel, Liquid, Materials science, Differential scanning calorimetry, Glass, Glass transition, Plasticizer, Physics of glass


The postulated glass-liquid transition of low density amorphous ice (LDA) is investigated with deuteron NMR stimulated echo experiments. Such experiments give access to ultra-slow reorientations of water molecules on time scales expected for structural relaxation of glass formers close to the glass-liquid transition temperature. An involved data analysis is necessary to account for signal contributions originating from a gradual crystallization to cubic ice. Even if some ambiguities remain, our findings support the view that pressure amorphized LDA ices are of glassy nature and undergo a glass-liquid transition before crystallization.

Concepts: Crystal, Water, Solid, Liquid, Glass, Glass transition, Amorphous solid, Physics of glass


Amorphous matrices, composed of sugars, are markedly plasticized by moisture uptake, which results in physical instability. Our previous studies, in the compression pressure range ≤443 MPa, indicated that when a matrix is compressed, the amount of sorbed water at given relative humidities (RHs) decreases, whereas the glass transition temperature (Tg ) remains constant. Herein, the effect of higher compression pressures than those used previously was explored to investigate the feasibility of using compression to improve the physical stability of amorphous sugar matrix against water uptake and subsequent collapse. Amorphous sugar samples were prepared by freeze-drying and then compressed at 0-665 MPa, followed by rehumidification at given RHs. The physical stability of the amorphous sugar sample was evaluated by measuring Tg and crystallization temperature (Tcry ). The amounts of sorbed water, different in the interaction state, were determined using an FTIR technique. It was found that the compression at pressures of ≥443 MPa decreased the amount of sorbed water, which is a major factor in plasticization and crystallization, and thus markedly increased the Tg and Tcry relative to that for the uncompressed sample. Hence, the compression at several hundreds MPa appears to be feasible for improving the physical stability of amorphous sugar matrix. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci.

Concepts: Liquid, Pressure, Glass, Glass transition, Vacuum, Amorphous solid, Physics of glass, Compression


The ability of some liquids to vitrify during supercooling is usually seen as a consequence of the rates of crystal nucleation (and∕or crystal growth) becoming small [D. R. Uhlmann, J. Non-Cryst. Solids 7, 337 (1972)] - and thus a matter of kinetics. However, there is evidence dating back to the empirics of coal briquetting for maximum trucking efficiency [D. Frenkel, Physics 3, 37 (2010)] that some object shapes find little advantage in self-assembly to ordered structures - meaning random packings prevail. Noting that key studies of non-spherical object packing have never been followed from hard ellipsoids [A. Donev, F. H. Stillinger, P. M. Chaikin, and S. Torquato, Phys. Rev. Lett. 92, 255506 (2004); A. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger, R. Connelly, S. Torquato, and P. M. Chaikin, Science 303, 990 (2004)] or spherocylinders [S. R. Williams and A. P. Philipse, Phys. Rev. E 67, 051301 (2003)] (diatomics excepted [S.-H. Chong, A. J. Moreno, F. Sciortino, and W. Kob, Phys. Rev. Lett. 94, 215701 (2005)] into the world of molecules with attractive forces, we have made a molecular dynamics study of crystal melting and glass formation on the Gay-Berne (G-B) model of ellipsoidal objects [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981)] across the aspect ratio range of the hard ellipsoid studies. Here, we report that in the aspect ratio range of maximum ellipsoid packing efficiency, various G-B crystalline states that cannot be obtained directly from the liquid, disorder spontaneously near 0 K and transform to liquids without any detectable enthalpy of fusion. Without claiming to have proved the existence of single component examples, we use the present observations, together with our knowledge of non-ideal mixing effects, to discuss the probable existence of “ideal glassformers” - single or multicomponent liquids that vitrify before ever becoming metastable with respect to crystals. We find evidence that “ideal glassformer” systems might also be highly fragile systems, approaching the “ideal glass” condition. We link this to the high “volume fragility” behavior observed in recent hard dumbbell studies at similar length∕diameter ratios [R. Zhang and K. S. Schweitzer, J. Chem. Phys. 133, 104902 (2010)]. The discussion suggests some unusual systems for laboratory study. Using differential scanning calorimetry detection of fusion points Tm, liquidus temperatures Tl, and glass transition temperatures Tg, we describe a system that would seem incapable of crystallizing before glass transition, i.e., an “ideal glassformer.” The existence of crystal-free routes to the glassy state will eliminate precrystalline fluctuations as a source of the dynamic heterogeneities that are generally considered important in the discussion of the “glassy state problem [P. W. Anderson, Science 267, 1615 (1995)].”

Concepts: Crystal, Thermodynamics, Solid, Materials science, Glass, Glass transition, Melting point, Physics of glass


Phonon scattering by nanostructures and point defects has become the primary strategy for minimizing the lattice thermal conductivity (κL ) in thermoelectric materials. However, these scatterers are only effective at the extremes of the phonon spectrum. Recently, it has been demonstrated that dislocations are effective at scattering the remaining mid-frequency phonons as well. In this work, by varying the concentration of Na in Pb0.97 Eu0.03 Te, it has been determined that the dominant microstructural features are point defects, lattice dislocations, and nanostructure interfaces. This study reveals that dense lattice dislocations (≈4 × 10(12) cm(-2) ) are particularly effective at reducing κL . When the dislocation concentration is maximized, one of the lowest κL values reported for PbTe is achieved. Furthermore, due to the band convergence of the alloyed 3% mol. EuTe the electronic performance is enhanced, and a high thermoelectric figure of merit, zT, of ≈2.2 is achieved. This work not only demonstrates the effectiveness of dense lattice dislocations as a means of lowering κL , but also the importance of engineering both thermal and electronic transport simultaneously when designing high-performance thermoelectrics.

Concepts: Metal, Thermal conductivity, Raman scattering, Heat transfer, Crystallographic defect, Phonon, Thermoelectric effect, Physics of glass


It has long been conjectured that any metallic liquid can be vitrified into a glassy state provided that the cooling rate is sufficiently high. Experimentally, however, vitrification of single-element metallic liquids is notoriously difficult. True laboratory demonstration of the formation of monatomic metallic glass has been lacking. Here we report an experimental approach to the vitrification of monatomic metallic liquids by achieving an unprecedentedly high liquid-quenching rate of 10(14) K s(-1). Under such a high cooling rate, melts of pure refractory body-centred cubic (bcc) metals, such as liquid tantalum and vanadium, are successfully vitrified to form metallic glasses suitable for property interrogations. Combining in situ transmission electron microscopy observation and atoms-to-continuum modelling, we investigated the formation condition and thermal stability of the monatomic metallic glasses as obtained. The availability of monatomic metallic glasses, being the simplest glass formers, offers unique possibilities for studying the structure and property relationships of glasses. Our technique also shows great control over the reversible vitrification-crystallization processes, suggesting its potential in micro-electromechanical applications. The ultrahigh cooling rate, approaching the highest liquid-quenching rate attainable in the experiment, makes it possible to explore the fast kinetics and structural behaviour of supercooled metallic liquids within the nanosecond to picosecond regimes.

Concepts: Metal, Solid, Viscosity, Liquid, Glass, Glass transition, Physics of glass, Vitrification


Graphene exhibits extraordinary electronic and mechanical properties, and extremely high thermal conductivity. Being a very stable atomically thick membrane that can be suspended between two leads, graphene provides a perfect test platform for studying thermal conductivity in two-dimensional systems, which is of primary importance for phonon transport in low-dimensional materials. Here we report experimental measurements and non-equilibrium molecular dynamics simulations of thermal conduction in suspended single-layer graphene as a function of both temperature and sample length. Interestingly and in contrast to bulk materials, at 300 K, thermal conductivity keeps increasing and remains logarithmically divergent with sample length even for sample lengths much larger than the average phonon mean free path. This result is a consequence of the two-dimensional nature of phonons in graphene, and provides fundamental understanding of thermal transport in two-dimensional materials.

Concepts: Heat, Thermal conductivity, Electrical conductivity, Heat transfer, Helium, Phonon, Physics of glass, Heat conduction


Vitrification from physical vapor deposition is known to be an efficient way for tuning the kinetic and thermodynamic stability of glasses and significantly improve their properties. There is a general consensus that preparing stable glasses requires the use of high substrate temperatures close to the glass transition one, Tg. Here, we challenge this empirical rule by showing the formation of Zr-based ultrastable metallic glasses (MGs) at room temperature, i.e., with a substrate temperature of only 0.43Tg. By carefully controlling the deposition rate, we can improve the stability of the obtained glasses to higher values. In contrast to conventional quenched glasses, the ultrastable MGs exhibit a large increase of Tg of ∼60 K, stronger resistance against crystallization, and more homogeneous structure with less order at longer distances. Our study circumvents the limitation of substrate temperature for developing ultrastable glasses, and provides deeper insight into glasses stability and their surface dynamics.

Concepts: Energy, Temperature, Thermodynamics, Heat, Entropy, Glass, Cold, Physics of glass


Achieving higher carrier mobility plays a pivotal role for obtaining potentially high thermoelectric performance. In principle, the carrier mobility is governed by the band structure as well as by the carrier scattering mechanism. Here, we demonstrate that by manipulating the carrier scattering mechanism in n-type Mg3Sb2-based materials, a substantial improvement in carrier mobility, and hence the power factor, can be achieved. In this work, Fe, Co, Hf, and Ta are doped on the Mg site of Mg3.2Sb1.5Bi0.49Te0.01, where the ionized impurity scattering crosses over to mixed ionized impurity and acoustic phonon scattering. A significant improvement in Hall mobility from ∼16 to ∼81 cm(2)⋅V(-1)⋅s(-1) is obtained, thus leading to a notably enhanced power factor of ∼13 μW⋅cm(-1)⋅K(-2) from ∼5 μW⋅cm(-1)⋅K(-2) A simultaneous reduction in thermal conductivity is also achieved. Collectively, a figure of merit (ZT) of ∼1.7 is obtained at 773 K in Mg3.1Co0.1Sb1.5Bi0.49Te0.01 The concept of manipulating the carrier scattering mechanism to improve the mobility should also be applicable to other material systems.

Concepts: Condensed matter physics, Semiconductor, Materials science, Thermal conductivity, Raman scattering, Phonon, Physics of glass, Bloch wave