Discover the most talked about and latest scientific content & concepts.

Concept: Physical quantities


Experimental data are shown for survival of fossilized diatoms undergoing shocks in the GPa range. The results were obtained from hypervelocity impact experiments which fired fossilized diatoms frozen in ice into water targets. After the shots, the material recovered from the target water was inspected for diatom fossils. Nine shots were carried out, at speeds from 0.388 to 5.34 km s(-1), corresponding to mean peak pressures of 0.2-19 GPa. In all cases, fragmented fossilized diatoms were recovered, but both the mean and the maximum fragment size decreased with increasing impact speed and hence peak pressure. Examples of intact diatoms were found after the impacts, even in some of the higher speed shots, but their frequency and size decreased significantly at the higher speeds. This is the first demonstration that fossils can survive and be transferred from projectile to target in hypervelocity impacts, implying that it is possible that, as suggested by other authors, terrestrial rocks ejected from the Earth by giant impacts from space, and which then strike the Moon, may successfully transfer terrestrial fossils to the Moon.

Concepts: Pressure, Physical quantities, Projectile, Moon, Velocity, Hypervelocity, Impact crater, Earth


The many unique properties of graphene, such as the tunable optical, electrical, and plasmonic response make it ideally suited for applications such as biosensing. As with other surface-based biosensors, however, the performance is limited by the diffusive transport of target molecules to the surface. Here we show that atomically sharp edges of monolayer graphene can generate singular electrical field gradients for trapping biomolecules via dielectrophoresis. Graphene-edge dielectrophoresis pushes the physical limit of gradient-force-based trapping by creating atomically sharp tweezers. We have fabricated locally backgated devices with an 8-nm-thick HfO2 dielectric layer and chemical-vapor-deposited graphene to generate 10× higher gradient forces as compared to metal electrodes. We further demonstrate near-100% position-controlled particle trapping at voltages as low as 0.45 V with nanodiamonds, nanobeads, and DNA from bulk solution within seconds. This trapping scheme can be seamlessly integrated with sensors utilizing graphene as well as other two-dimensional materials.

Concepts: Physical quantities, Electron, Chemistry, Atom, Photon, Electromagnetism, Molecule, Electric charge


Nanomechanical devices have attracted the interest of a growing interdisciplinary research community, since they can be used as highly sensitive transducers for various physical quantities. Exquisite control over these systems facilitates experiments on the foundations of physics. Here, we demonstrate that an optically trapped silicon nanorod, set into rotation at MHz frequencies, can be locked to an external clock, transducing the properties of the time standard to the rod’s motion with a remarkable frequency stability f r/Δf r of 7.7 × 10(11). While the dynamics of this periodically driven rotor generally can be chaotic, we derive and verify that stable limit cycles exist over a surprisingly wide parameter range. This robustness should enable, in principle, measurements of external torques with sensitivities better than 0.25 zNm, even at room temperature. We show that in a dilute gas, real-time phase measurements on the locked nanorod transduce pressure values with a sensitivity of 0.3%.

Concepts: Rotation, Physical property, Hertz, Microphone, Energy, Fundamental physics concepts, Physical quantities, Frequency


Organic thin-film transistors (OTFTs) can be fabricated at moderate temperatures and through cost-effective solution-based processes on a wide range of low-cost flexible and deformable substrates. Although the charge mobility of state-of-the-art OTFTs is superior to that of amorphous silicon and approaches that of amorphous oxide thin-film transistors (TFTs), their operational stability generally remains inferior and a point of concern for their commercial deployment. We report on an exhaustive characterization of OTFTs with an ultrathin bilayer gate dielectric comprising the amorphous fluoropolymer CYTOP and an Al2O3:HfO2 nanolaminate. Threshold voltage shifts measured at room temperature over time periods up to 5.9 × 105 s do not vary monotonically and remain below 0.2 V in microcrystalline OTFTs (μc-OTFTs) with field-effect carrier mobility values up to 1.6 cm2 V-1 s-1. Modeling of these shifts as a function of time with a double stretched-exponential (DSE) function suggests that two compensating aging mechanisms are at play and responsible for this high stability. The measured threshold voltage shifts at temperatures up to 75°C represent at least a one-order-of-magnitude improvement in the operational stability over previous reports, bringing OTFT technologies to a performance level comparable to that reported in the scientific literature for other commercial TFTs technologies.

Concepts: Report, MOSFET, Amorphous silicon, Solid, Silicon, Thin-film transistor, Physical quantities, Semiconductor


Despite the importance of precipitation phase to global hydroclimate simulations, many land surface models use spatially uniform air temperature thresholds to partition rain and snow. Here we show, through the analysis of a 29-year observational dataset (n = 17.8 million), that the air temperature at which rain and snow fall in equal frequency varies significantly across the Northern Hemisphere, averaging 1.0 °C and ranging from -0.4 to 2.4 °C for 95% of the stations. Continental climates generally exhibit the warmest rain-snow thresholds and maritime the coolest. Simulations show precipitation phase methods incorporating humidity perform better than air temperature-only methods, particularly at relative humidity values below saturation and air temperatures between 0.6 and 3.4 °C. We also present the first continuous Northern Hemisphere map of rain-snow thresholds, underlining the spatial variability of precipitation phase partitioning. These results suggest precipitation phase could be better predicted using humidity and air temperature in large-scale land surface model runs.

Concepts: Physical quantities, Relative humidity, Solubility, Tropical cyclone, Humidity, Water vapor, Climate, Precipitation


Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy.

Concepts: Physical quantities, Photon, Quantum yield, Light, Quantum efficiency, Quantum mechanics, Solar cell, Photovoltaics


The atomic-scale response of dielectrics/ferroelectrics to electric fields is central to their functionality. Here we introduce an in situ characterization method that reveals changes in the local atomic structure in polycrystalline materials under fields. The method employs atomic pair distribution functions (PDFs), determined from X-ray total scattering that depends on orientation relative to the applied field, to probe structural changes over length scales from sub-Ångstrom to several nanometres. The PDF is sensitive to local ionic displacements and their short-range order, a key uniqueness relative to other techniques. The method is applied to representative ferroelectrics, BaTiO3 and Na½Bi½TiO3, and dielectric SrTiO3. For Na½Bi½TiO3, the results reveal an abrupt field-induced monoclinic to rhombohedral phase transition, accompanied by ordering of the local Bi displacements and reorientation of the nanoscale ferroelectric domains. For BaTiO3 and SrTiO3, the local/nanoscale structural changes observed in the PDFs are dominated by piezoelectric lattice strain and ionic polarizability, respectively.

Concepts: Scientific method, Pyroelectricity, Piezoelectricity, Physical quantities, Ferroelectricity, Crystal, Permittivity, Fundamental physics concepts


Abstract The purpose of the study was to assess the average physical intensity and energy expenditure during a single round of golf on hilly and flat courses in a heterogeneous group of healthy men and women of varying age and golf handicap. Forty-two males and 24 females completed an incremental cycle-ergometer exercise test to determine exercise performance markers. The heart rate (HR), duration, distance, walking speed, ascent and descent were measured via a global positioning system (GPS)/HR monitor during the game and energy expenditure was calculated. Playing 9 or 18-holes of golf, independent of the golf course design, the average HR was not significantly different between sexes or the subgroups. The intensities were light with respect to the percentage of maximal HR and metabolic equivalents of task (METs). Total energy expenditure of all participants was not significantly different for hilly (834 ± 344 kcal) vs. flat courses (833 ± 295 kcal) whereas male players expended significantly greater energy than female players (926 ± 292 vs. 556 ± 180 kcal), but did not have significantly greater relative energy expenditure (2.8 ± 0.8 vs. 2.2 ± 0.7 METs). As a high volume physical activity, playing golf is suggested to yield health benefits. Since the intensity was well below recommended limits, golf may have health related benefits unrelated to the intensity level of the activity.

Concepts: Energy, Physical quantities, Light, Gender, Golf, Female, Male, Sex


Drawing from a series of field measurement activities including the Alternative Aviation Fuels Experiments (AAFEX1 and AAFEX2), we present experimental measurements of particle number, size, and composition-resolved mass that describe the physical and chemical evolution of aircraft exhaust plumes on the time scale of 5 sec to 2-3 min. As the plume ages, the particle number emission index initially increases by a factor of 10-50, due to gas-to-particle formation of a nucleation/growth mode, and then begins to fall with increased aging. Increasing the fuel sulfur content causes the initial increase to occur more rapidly. The contribution of the nucleation/growth mode to the overall particle number density is most pronounced at idle power and decreases with increasing engine power. Increasing fuel sulfur content - but not fuel aromatic content - causes the nucleation/growth mode to dominate the particle number emissions to higher powers than for a fuel with “normal” sulfur and aromatic content. Particle size measurements indicate that the observed particle number emissions trends are due to continuing gas-to-particle conversion and coagulation growth of the nucleation/growth mode particles, processes which simultaneously increase particle mass and reduce particle number density. Measurements of nucleation/growth mode mass are consistent with the interpretation of particle number and size data and suggest that engine exit plane measurements may underestimate the total particle mass by much as a factor of between 5 and 10.

Concepts: Fuel, Particle, Plume, Experiment, Particle physics, Physical quantities, Ultra-low sulfur diesel, Number density


The low-loss region of the electron energy-loss spectrum, the valence EELS, provides information about the electronic structure and optical properties of materials. For bulk materials the spectral intensity can be directly connected to the complex dielectric function. Ab initio quantum mechanical calculations have an important role to play in the interpretation of the fine spectral detail and how this can be connected to the material properties. This paper provides an overview of theoretical background to the calculation of valence EELS in bulk solids and gives specific details on how to run such calculations using the WIEN2k code. The comparison of Au and AuAl(2) illustrates how in metals such calculations are successful in reproducing the main spectral details and can be used to understand the origin of the different colours of these two metals.

Concepts: Physical quantities, Dielectric, Electron, Quantum mechanics, Atom, Light, Materials science, Optics