Discover the most talked about and latest scientific content & concepts.

Concept: Physical chemistry


Although the energy densities of batteries continue to increase, safety problems (for example, fires and explosions) associated with the use of highly flammable liquid organic electrolytes remain a big issue, significantly hindering further practical applications of the next generation of high-energy batteries. We have fabricated a novel “smart” nonwoven electrospun separator with thermal-triggered flame-retardant properties for lithium-ion batteries. The encapsulation of a flame retardant inside a protective polymer shell has prevented direct dissolution of the retardant agent into the electrolyte, which would otherwise have negative effects on battery performance. During thermal runaway of the lithium-ion battery, the protective polymer shell would melt, triggered by the increased temperature, and the flame retardant would be released, thus effectively suppressing the combustion of the highly flammable electrolytes.

Concepts: Physical chemistry, Lithium-ion battery, Temperature, Water, Rechargeable battery, Fire, Lithium, Lithium battery


Cholesterol has been suggested to play a role in stable vesicle formation by adjusting the molecular packing of the vesicular bilayer. To explore the mechanisms involved in adjusting the bilayer structure by cholesterol, the molecular packing behavior in a mimic outer layer of cationic dialkyldimethylammonium bromide (DXDAB)/cholesterol vesicular bilayer was investigated by the Langmuir monolayer approach with infrared reflection-absorption spectroscopy (IRRAS). The results indicated that the addition of cholesterol in the DXDAB Langmuir monolayers not only restrained the desorption of the DXDAB with short hydrocarbon chains, such as ditetradecyldimethylammonium bromide or dihexadecyldimethylammonium bromide, into the aqueous phase but also induced a condensing effect on the DXDAB monolayers. At a liquid-expanded (LE) state, the ordering effect of cholesterol accompanying the condensing effect occurred in the mixed DXDAB/cholesterol monolayers due to the tendency of maximizing hydrocarbon chain contact between cholesterol and the neighboring hydrocarbon chains. However, for the mixed monolayers containing the DXDAB with long hydrocarbon chains, such as dioctadecyldimethylammonium bromide (DODAB), the disordering effect of cholesterol took place at a liquid-condensed (LC) state. This was related to the molecular structure of cholesterol and hydrocarbon chain length of DODAB. The rigid sterol ring of cholesterol hindered the portion of neighboring hydrocarbon chains from motion. However, the flexible alkyl side-chain of cholesterol along with the corresponding portion of neighboring hydrocarbon chains formed a fluidic region, counteracting the enhanced conformational order induced by the sterol ring of cholesterol. Furthermore, the long hydrocarbon chains of DODAB possessed a more pronounced motion freedom, resulting in a more disordered packing of the monolayers.

Concepts: Physical chemistry, Molecular geometry, Steroid, Lipid bilayer, Infrared spectroscopy, Langmuir, Hydrocarbon, Monolayer


Despite a major expansion of uranium-ligand multiple bond chemistry in recent years, analogous complexes involving other actinides (An) remain scarce. For thorium, under ambient conditions only a few multiple bonds to carbon, nitrogen, phosphorus and chalcogenides are reported, and none to arsenic are known; indeed only two complexes with thorium-arsenic single bonds have been structurally authenticated, reflecting the challenges of stabilizing polar linkages at the large thorium ion. Here, we report thorium parent-arsenide (ThAsH2), -arsinidiides (ThAs(H)K and ThAs(H)Th) and arsenido (ThAsTh) linkages stabilized by a bulky triamidoamine ligand. The ThAs(H)K and ThAsTh linkages exhibit polarized-covalent thorium-arsenic multiple bonding interactions, hitherto restricted to cryogenic matrix isolation experiments, and the AnAs(H)An and AnAsAn linkages reported here have no precedent in f-block chemistry. 7s, 6d and 5f orbital contributions to the Th-As bonds are suggested by quantum chemical calculations, and their compositions unexpectedly appear to be tensioned differently compared to phosphorus congeners.

Concepts: Hydrogen, Physical chemistry, Quantum chemistry, Chemical element, Molecule, Bond, Atom, Chemistry


Porous yet densely packed carbon electrodes with high ion-accessible surface area and low ion transport resistance are crucial to the realization of high-density electrochemical capacitive energy storage but have proved to be very challenging to produce. Taking advantage of chemically converted graphene’s intrinsic microcorrugated two-dimensional configuration and self-assembly behavior, we show that such materials can be readily formed by capillary compression of adaptive graphene gel films in the presence of a nonvolatile liquid electrolyte. This simple soft approach enables subnanometer scale integration of graphene sheets with electrolytes to form highly compact carbon electrodes with a continuous ion transport network. Electrochemical capacitors based on the resulting films can obtain volumetric energy densities approaching 60 watt-hours per liter.

Concepts: Capacitor, Electrolyte, Energy density, Physical chemistry, Electrochemistry, Volume, Water, Battery


Lithium-ion conducting solid electrolytes hold the promise for enabling high-energy battery chemistries and circumventing safety issues of conventional lithium batteries. Achieving the combination of high ionic conductivity and broad electrochemical window in solid electrolytes is a grand challenge for the synthesis of battery materials. Herein we show an enhancement of room-temperature lithium-ion conductivity of 3 orders of magnitude by creating nanostructured Li3PS4. This material has a wide (5 V) electrochemical window and superior chemical stability against lithium metal. The nanoporous structure of Li3PS4 reconciles two vital effects that enhance ionic conductivity: (1) The reduced dimension to nanometer-sized framework stabilizes the high conduction beta phase that occurs at elevated temperatures; and (2) The high surface-to-bulk ratio of nanoporous β-Li3PS4 promotes surface conduction. Manipulating the ionic conductivity of solid electrolytes has far-reaching implications for materials design and synthesis in a broad range of applications such as batteries, fuel-cells, sensors, photovoltaic systems, and so forth.

Concepts: Physical chemistry, Lithium-ion battery, Metal, Electrolysis, Lithium battery, Battery, Electrochemistry, Lithium


Fine-particle pollution associated with winter haze threatens the health of more than 400 million people in the North China Plain. Sulfate is a major component of fine haze particles. Record sulfate concentrations of up to ~300 μg m(-3) were observed during the January 2013 winter haze event in Beijing. State-of-the-art air quality models that rely on sulfate production mechanisms requiring photochemical oxidants cannot predict these high levels because of the weak photochemistry activity during haze events. We find that the missing source of sulfate and particulate matter can be explained by reactive nitrogen chemistry in aerosol water. The aerosol water serves as a reactor, where the alkaline aerosol components trap SO2, which is oxidized by NO2 to form sulfate, whereby high reaction rates are sustained by the high neutralizing capacity of the atmosphere in northern China. This mechanism is self-amplifying because higher aerosol mass concentration corresponds to higher aerosol water content, leading to faster sulfate production and more severe haze pollution.

Concepts: Sulfuric acid, Beijing, Air pollution, Physical chemistry, North China, Particulate, Chemistry, Smog


In recent years, amorphous formulations and other special dosage forms of drug products have been investigated to achieve adequate solubility and disintegration. We have evaluated the distribution of crystalline and amorphous states of a drug product using Nanothermal analysis (Nano-TA) and Raman imaging methods. Compared to conventional differential scanning calorimetry, Nano-TA can be used to more rapidly characterize the crystalline and amorphous states of model formulations, including their ingredient distributions, without any sample preparation. In the current study, imaging maps obtained for specific model formulations were evaluated on the basis of their visual appearance and the physicochemical properties of the active pharmaceutical ingredient (API). In addition, the crystalline and amorphous states of the model formulations were distinguished by Raman mapping. Nano-TA was found to be useful for the characterization of crystalline and amorphous states of APIs and the distribution of other ingredients. This technology could be used to monitor the changes in crystalline forms of drug substances and dosage forms during processing. In addition, Nano-TA can be used to characterize amorphous states.

Concepts: Isothermal titration calorimetry, Glass transition, Physical chemistry, Active ingredient, Differential scanning calorimetry, Pharmaceutical drug, Materials science, Pharmacology


Many biopolymers assume ordered structure in solution due to specific intermolecular interactions, and subsequently aggregate to form fibrous network structures, which play important structural and functional roles both in biomedical tissues and in biopolymeric applied materials. In this study, the pulsed-field-gradient stimulated echo (PGSTE) (1)H NMR method was utilized to elucidate the gelation mechanism and to determine the network structure of agarose. The echo signal intensity of agarose decreased with the formation of aggregated bundles, and therefore, it was used to determine the concentration of the solute agarose (c(sol)) in the gel. The diffusion coefficient of a dendrimer, added to the gel as a probe molecule, increased concomitantly with the formation of the network of aggregated bundles, suggesting apparent dilution of solute agarose in the network interspaces. The hydrodynamic mesh size (ξ) of the network was estimated from the degree of retardation of the diffusion. The dependence of ξ on c(sol) was interpreted using a simple model, where the hydrodynamic interaction of the probe molecule with a solute chain or an aggregated bundle of chains is same. Our theoretically predicted lines fitted well on the experimentally obtained plots, thus validating the use of this model.

Concepts: Matter, Solution, Concentration, Macromolecule, Physical chemistry, Structure, Colloid, Chemistry


Ionic liquids (ILs) are a novel class of solvents with interesting physicochemical properties. Many different applications have been reported for ILs as alternatives to organic solvents in chemical and bioprocesses. Despite the argued advantage of having low vapor pressure, even the most hydrophobic ILs show some degree of solubility in water, allowing their dispersion into aquatic systems and raising concerns on its pollutant potential. Moreover, nowadays most widespread notion concerning the ILs toxicity is that there is a direct relationship with their hydrophobicity/lipophilicity. This work aims at enlarging the currently limited knowledge on ILs toxicity by addressing negative impacts in aquatic ecosystems and investigating the possibility of designing hydrophobic ILs of low ecotoxicity, by the manipulation of their chemical structures. The impact of aromaticity on the toxicity of different cations (pyridinium, piperidinium, pyrrolidinium and imidazolium) and hydrophobic anions (bis(trifluoromethylsulfonyl)imide [NTf(2)] and hexafluorophosphate [PF(6)]) was analysed. Concomitantly, several imidazolium-based ILs of the type [C( n )C( m )C( j )im][NTf(2)] were also studied to evaluate the effects of the position of the alkyl chain on the ILs' toxicity. For that purpose, standard assays were performed using organisms of different trophic levels, Vibrio fischeri, Pseudokirchneriella subcapitata and Daphnia magna, allowing to evaluate the consistency of the structure-activity relationships across different biological targets. The results here reported suggest the possibility of designing ILs with an enhanced hydrophobic character and lower toxicity, by elimination of their aromatic nature.

Concepts: Ecosystem, Physical chemistry, Deep eutectic solvent, Vapor pressure, Water, Solubility, Solvent, Ionic liquid


Abstract 1. Doxorubicin exhibited dose-independent pharmacokinetics after intravenous (5-20 mg/kg) and oral (20-100 mg/kg) administration to rats. Nearly all (82.1-99.7%) of the orally administered doxorubicin remained unabsorbed, and the hepatic first-pass extraction ratio and oral bioavailability of doxorubicin were approximately 0.5% and 1%, respectively. Based on these results, it is likely that the primary factor responsible for the low oral bioavailability of doxorubicin is the limited intestinal absorption, rather than the CYP3A4-mediated first-pass metabolism. 2. Moreover, the in vitro transport and cellular uptake studies using Caco-2 cell monolayers have revealed that doxorubicin crosses the intestinal epithelium primarily via the paracellular pathway (accounting for 85.6% of the overall absorptive transport) probably due to its physicochemical properties (hydrophilic cation; pK(a) = 9.67, log P = -0.5). These results suggest that P-glycoprotein (P-gp)-mediated efflux activity does not play a significant role in limiting the intestinal absorption of doxorubicin, attenuating the absorptive transport by only 5.56-13.2%. 3. Taken together, the present study demonstrated that the limited and paracellular intestinal absorption of doxorubicin was a major factor responsible for its low oral bioavailability, restricting the role of CYP3A4-mediated first-pass metabolism and P-gp-mediated efflux.

Concepts: Medicinal chemistry, Biopharmaceutics Classification System, Epithelium, Small intestine, Physical chemistry, Bioavailability, Pharmacokinetics