Discover the most talked about and latest scientific content & concepts.

Concept: Phylogenetic nomenclature


Palaeomerycids were strange three-horned Eurasian Miocene ruminants known through fossils from Spain to China. We here study their systematics, offering the first cladistic phylogeny of the best-known species of the group, and also reassess their phylogenetic position among ruminants, which is currently disputed. The beautifully preserved remains of a new palaeomerycid from middle Miocene deposits of Spain, Xenokeryx amidalae gen. et sp. nov., helps us to better understand palaeomerycid anatomy, especially that of the nuchal region in the skull, significantly improving our current knowledge on these enigmatic ruminants. Our results show two main lineages of palaeomerycids, one containing the genus Ampelomeryx diagnosed by a characteristic type of cranium / cranial appendages and some dental derived traits, and another one that clusters those forms more closely related to Triceromeryx than to Ampelomeryx, characterized by a more derived dentition and a set of apomorphic cranial features. Xenokeryx branches as a basal offshoot of this clade. Also, we find that Eurasian palaeomerycids are not closely related to North American dromomerycids, thus rejecting the currently more accepted view of palaeomerycids as the Eurasian part of the dromomerycid lineage. Instead of this, palaeomerycids are nested with the African Miocene pecoran Propalaeoryx and with giraffoids. On the other hand, dromomerycids are closely related to cervids. We define a clade Giraffomorpha that includes palaeomerycids and giraffids, and propose an emended diagnosis of the Palaeomerycidae based on cranial and postcranial characters, including several features of the cranium not described so far. We also define the Palaeomerycidae as the least inclusive clade of pecorans containing Triceromeryx and Ampelomeryx. Finally, we reassess the taxonomy of several palaeomerycid taxa.

Concepts: Taxonomy, Phylogenetic nomenclature, Skull, Phylogenetics, Cladistics, Clade, Phylogenetic comparative methods, Palaeomerycidae


Spiders (Order Araneae) are massively abundant generalist arthropod predators that are found in nearly every ecosystem on the planet and have persisted for over 380 million years. Spiders have long served as evolutionary models for studying complex mating and web spinning behaviors, key innovation and adaptive radiation hypotheses, and have been inspiration for important theories like sexual selection by female choice. Unfortunately, past major attempts to reconstruct spider phylogeny typically employing the “usual suspect” genes have been unable to produce a well-supported phylogenetic framework for the entire order. To further resolve spider evolutionary relationships we have assembled a transcriptome-based data set comprising 70 ingroup spider taxa. Using maximum likelihood and shortcut coalescence-based approaches, we analyze eight data sets, the largest of which contains 3,398 gene regions and 696,652 amino acid sites forming the largest phylogenomic analysis of spider relationships produced to date. Contrary to long held beliefs that the orb web is the crowning achievement of spider evolution, ancestral state reconstructions of web type support a phylogenetically ancient origin of the orb web, and diversification analyses show that the mostly ground-dwelling, web-less RTA clade diversified faster than orb weavers. Consistent with molecular dating estimates we report herein, this may reflect a major increase in biomass of non-flying insects during the Cretaceous Terrestrial Revolution 125-90 million years ago favoring diversification of spiders that feed on cursorial rather than flying prey. Our results also have major implications for our understanding of spider systematics. Phylogenomic analyses corroborate several well-accepted high level groupings: Opisthothele, Mygalomorphae, Atypoidina, Avicularoidea, Theraphosoidina, Araneomorphae, Entelegynae, Araneoidea, the RTA clade, Dionycha and the Lycosoidea. Alternatively, our results challenge the monophyly of Eresoidea, Orbiculariae, and Deinopoidea. The composition of the major paleocribellate and neocribellate clades, the basal divisions of Araneomorphae, appear to be falsified. Traditional Haplogynae is in need of revision, as our findings appear to support the newly conceived concept of Synspermiata. The sister pairing of filistatids with hypochilids implies that some peculiar features of each family may in fact be synapomorphic for the pair. Leptonetids now are seen as a possible sister group to the Entelegynae, illustrating possible intermediates in the evolution of the more complex entelegyne genitalic condition, spinning organs and respiratory organs.

Concepts: Evolution, Insect, Phylogenetic nomenclature, Phylogenetic tree, Phylogenetics, Cladistics, Spider, Araneomorphae


gen. et sp. nov. is described from the Famennian Worange Point Formation; the holotype is amongst the largest tristichopterids and sarcopterygians documented by semi-articulated remains from the Devonian Period. The new taxon has dentary fangs and premaxillary tusks, features assumed to be derived for large Northern Hemisphere tristichopterids (, , ). It resembles in ornament, but is distinguished by longer proportions of the parietal compared to the post-parietal shield, and numerous differences in shape and proportions of other bones. Several characters (accessory vomers in the palate, submandibulars overlapping ventral jaw margin, scales ornamented with widely-spaced deep grooves) are recorded only in tristichopterids from East Gondwana (Australia-Antarctica). On this evidence gen. nov. is placed in an endemic Gondwanan subfamily Mandageriinae within the Tristichopteridae; it differs from the nominal genotype in its larger size, less pointed skull, shape of the orbits and other skull characters. The hypothesis that tristichopterids evolved in Laurussia and later dispersed into Gondwana, and a derived subgroup of large Late Devonian genera dispersed from Gondwana, is inconsistent with the evidence of the new taxon. Using oldest fossil and most primitive clade criteria the most recent phylogeny resolves South China and Gondwana as areas of origin for all tetrapodomorphs. The immediate outgroup to tristichopterids remains unresolved - either from Greenland as recently proposed, or from Gondwana, earlier suggested to be the sister group to all tristichopterids. Both taxa combine two characters that do not co-occur in other tetrapodomorphs (extratemporal bone in the skull; non-cosmoid round scales with an internal boss). Recently both ‘primitive’ and ‘derived’ tristichopterids have been discovered in the late Middle Devonian of both hemispheres, implying extensive ghost lineages within the group. Resolving their phylogeny and biogeography will depend on a comprehensive new phylogenetic analysis.

Concepts: Phylogenetic nomenclature, Phylogenetics, Cladistics, Vertebrate, Sarcopterygii, Tetrapod, Carboniferous, Devonian


BACKGROUND: Scientists rarely reuse expert knowledge of phylogeny, in spite of years of effort to assemble a great “Tree of Life” (ToL). A notable exception involves the use of Phylomatic, which provides tools to generate custom phylogenies from a large, pre-computed, expert phylogeny of plant taxa. This suggests great potential for a more generalized system that, starting with a query consisting of a list of any known species, would rectify non-standard names, identify expert phylogenies containing the implicated taxa, prune away unneeded parts, and supply branch lengths and annotations, resulting in a custom phylogeny suited to the user’s needs. Such a system could become a sustainable community resource if implemented as a distributed system of loosely coupled parts that interact through clearly defined interfaces. RESULTS: With the aim of building such a “phylotastic” system, the NESCent Hackathons, Interoperability, Phylogenies (HIP) working group recruited 2 dozen scientist-programmers to a weeklong programming hackathon in June 2012. During the hackathon (and a three-month follow-up period), 5 teams produced designs, implementations, documentation, presentations, and tests including: (1) a generalized scheme for integrating components; (2) proof-of-concept pruners and controllers; (3) a meta-API for taxonomic name resolution services; (4) a system for storing, finding, and retrieving phylogenies using semantic web technologies for data exchange, storage, and querying; (5) an innovative new service,, which synthesizes pre-computed, time-calibrated phylogenies to assign ages to nodes; and (6) demonstration projects. These outcomes are accessible via a public code repository (, a website (, and a server image. CONCLUSIONS: Approximately 9 person-months of effort (centered on a software development hackathon) resulted in the design and implementation of proof-of-concept software for 4 core phylotastic components, 3 controllers, and 3 end-user demonstration tools. While these products have substantial limitations, they suggest considerable potential for a distributed system that makes phylogenetic knowledge readily accessible in computable form. Widespread use of phylotastic systems will create an electronic marketplace for sharing phylogenetic knowledge that will spur innovation in other areas of the ToL enterprise, such as annotation of sources and methods and third-party methods of quality assessment.

Concepts: Phylogenetic nomenclature, Phylogenetic tree, Phylogenetics, Cladistics, Computational phylogenetics, Phylogenetic comparative methods, Semantic Web


Morphology-based phylogenetic analyses are the only option for reconstructing relationships among extinct lineages, but often find support for conflicting hypotheses of relationships. The resulting lack of phylogenetic resolution is generally explained in terms of data quality and methodological issues, such as character selection. A previous suggestion is that sampling ancestral morphotaxa or sampling multiple taxa descended from a long-lived, unchanging lineage can also yield clades which have no opportunity to share synapomorphies. This lack of character information leads to a lack of ‘intrinsic’ resolution, an issue that cannot be solved with additional morphological data. It is unclear how often we should expect clades to be intrinsically resolvable in realistic circumstances, as intrinsic resolution must increase as taxonomic sampling decreases. Using branching simulations, I quantify intrinsic resolution across several models of morphological differentiation and taxonomic sampling. Intrinsically unresolvable clades are found to be relatively frequent in simulations of both extinct and living taxa under realistic sampling scenarios, implying that intrinsic resolution is an issue for morphology-based analyses of phylogeny. Simulations which vary the rates of sampling and differentiation were tested for their agreement to observed distributions of durations from well-sampled fossil records and also having high intrinsic resolution. This combination only occurs in those datasets when differentiation and sampling rates are both unrealistically high relative to branching and extinction rates. Thus, the poor phylogenetic resolution occasionally observed in morphological phylogenetics may result from a lack of intrinsic resolvability within groups.

Concepts: Scientific method, Evolution, Phylogenetic nomenclature, Phylogenetics, Cladistics, Paraphyly, Phylogenetic comparative methods, Fossil


Based on specimens previously identified as Tropidostoma, a new taxon of dicynodont (Bulbasaurus phylloxyron gen. et sp. nov.) from the Karoo Basin of South Africa is described. Bulbasaurus is a medium-sized dicynodont (maximum dorsal skull length 16.0 cm) restricted to the Tropidostoma Assemblage Zone (early Lopingian) of the Beaufort Group. Bulbasaurus can be distinguished from Tropidostoma by an array of characters including the presence of a tall, sharp premaxillary ridge, large, rugose, nearly-confluent nasal bosses, a nasofrontal ridge, massive tusks, robust pterygoids, prominently twisted subtemporal bar, and absence of a distinct postfrontal. Inclusion of Bulbasaurus in a phylogenetic analysis of anomodont therapsids recovers it as a member of Geikiidae, a clade of otherwise later Permian dicynodonts such as Aulacephalodon and Pelanomodon. Bulbasaurus exhibits many of the characters typical of adult Aulacephalodon, but at substantially smaller skull size (these characters are absent in comparably-sized Aulacephalodon juveniles), suggesting that the evolution of typical geikiid morphology preceded gigantism in the clade. Bulbasaurus is the earliest known geikiid and the only member of the group known from the Tropidostoma Assemblage Zone; discovery of this taxon shortens a perplexing ghost lineage and indicates that abundant clades from the later Permian of South Africa (e.g., Geikiidae, Dicynodontoidea) may have originated as rare components of earlier Karoo assemblage zones.

Concepts: Phylogenetic nomenclature, South Africa, Cladistics, Synapsid, Dicynodont, Therapsida, Anomodont, Beaufort Group


The Upper Cretaceous (middle-late Campanian) Wahweap Formation of southern Utah contains the oldest diagnostic evidence of ceratopsids (to date, all centrosaurines) in North America, with a number of specimens recovered from throughout a unit that spans between 81 and 77 Ma. Only a single specimen has been formally named, Diabloceratops eatoni, from the lower middle member of the formation. Machairoceratops cronusi gen. et sp. nov., a new centrosaurine ceratopsid from the upper member of the Wahweap Formation, is here described based on cranial material representing a single individual recovered from a calcareous mudstone. The specimen consists of two curved and elongate orbital horncores, a left jugal, a nearly complete, slightly deformed braincase, the left squamosal, and a mostly complete parietal ornamented by posteriorly projected, anterodorsally curved, elongate spikes on either side of a midline embayment. The fan-shaped, stepped-squamosal is diagnostic of Centrosaurinae, however, this element differs from the rectangular squamosal in Diabloceratops. Machairoceratops also differs in the possession of two anterodorsally (rather than laterally) curved epiparietal ornamentations on either side of a midline embayment that are distinguished by a posteromedially-oriented sulcus along the entire length of the epiparietal. Additionally, the parietosquamosal frill is lacking any other epiossifications along its periphery. Machairoceratops shares a triangular (rather than round) frill and spike-like epiparietal loci (p1) ornamentation with the stratigraphically lower Diabloceratops. Both parsimony and Bayesian phylogenetic analyses place Machairoceratops as an early-branching centrosaurine. However, the parsimony-based analysis provides little resolution for the position of the new taxon, placing it in an unresolved polytomy with Diabloceratops. The resultant Bayesian topology yielded better resolution, aligning Machairoceratops as the definitive sister taxon to a clade formed by Diabloceratops and Albertaceratops. Considered together, both phylogenetic methods unequivocally place Machairoceratops as an early-branching centrosaurine, and given the biostratigraphic position of Machairoceratops, these details increase the known ceratopsid diversity from both the Wahweap Formation and the southern portion of Laramidia. Finally, the unique morphology of the parietal ornamentation highlights the evolutionary disparity of frill ornamentation near the base of Centrosaurinae.

Concepts: Phylogenetic nomenclature, Phylogenetics, Cladistics, Ceratopsidae, Styracosaurus, Albertaceratops, Centrosaurinae, Achelousaurus


The Lufeng Formation in Lufeng Basin of Yunnan Province, southwestern China preserves one of the richest terrestrial Lower Jurassic vertebrate faunas globally, especially for its basal sauropodomorphs, such as Lufengosaurus and Yunnanosaurus. Here we report a new taxon, Xingxiulong chengi gen. et sp. nov. represented by three partial skeletons with overlapping elements. Xingxiulong possesses a number of autapomorphies, such as transversely expanded plate-like summit on top of the neural spine of posterior dorsal vertebrae, four sacral vertebrae, robust scapula, and elongated pubic plate approximately 40% of the total length of the pubis. Phylogenetic analysis resolves Xingxiulong as a basal member of Sauropodiformes, and together with another two Lufeng basal sauropodiforms Jingshanosaurus and Yunnanosaurus, they represent the basalmost lineages of this clade, indicating its Asian origin. Although being relatively primitive, Xingxiulong displays some derived features normally occurred in advanced sauropodiforms including sauropods, such as a four sacral-sacrum, a robust scapula, and a pubis with elongated pubic plate. The discovery of Xingxiulong increases the diversity of basal sauropodomorphs from the Lufeng Formation and indicates a more complicated scenario in the early evolution of sauropodiforms.

Concepts: Phylogenetic nomenclature, Pelvis, Cladistics, Vertebra, Yunnan, Kunming, Dinosaur, Prosauropoda


The late Campanian-early Maastrichtian site of Lo Hueco (Cuenca, Spain) has provided a set of well-preserved crocodyliform skull and lower jaw remains, which are described here and assigned to a new basal eusuchian taxon, Lohuecosuchus megadontos gen. et sp. nov. The reevaluation of a complete skull from the synchronous site of Fox-Amphoux (Department of Var, France) allows us to define a second species of this new genus. Phylogenetic analysis places Lohuecosuchus in a clade exclusively composed by European Late Cretaceous taxa. This new clade, defined here as Allodaposuchidae, is recognized as the sister group of Hylaeochampsidae, also comprised of European Cretaceous forms. Allodaposuchidae and Hylaeochampsidae are grouped in a clade identified as the sister group of Crocodylia, the only crocodyliform lineage that reaches our days. Allodaposuchidae shows a vicariant distribution pattern in the European Late Cretaceous archipelago, with several Ibero-Armorican forms more closely related to each other than with to Romanian Allodaposuchus precedens.

Concepts: Definition, Extensional definition, Phylogenetic nomenclature, Europe, Cladistics, Spain, Taxon, Crocodylomorpha


We compared 31 complete and nearly complete globally derived HSV-1 genomic sequences using HSV-2 HG52 as an outgroup to investigate their phylogenetic relationships and look for evidence of recombination. The sequences were retrieved from NCBI and were then aligned using Clustal W. The generation of a maximum likelihood tree resulted in a six clade structure that corresponded with the timing and routes of past human migration. The East African derived viruses contained the greatest amount of genetic diversity and formed four of the six clades. The East Asian and European/North American derived viruses formed separate clades. HSV-1 strains E07, E22 and E03 were highly divergent and may each represent an individual clade. Possible recombination was analyzed by partitioning the alignment into 5 kb segments, performing individual phylogenetic analysis on each partition and generating a.phylogenetic network from the results. However most evidence for recombination spread at the base of the tree suggesting that recombination did not significantly disrupt the clade structure. Examination of previous estimates of HSV-1 mutation rates in conjunction with the phylogenetic data presented here, suggests that the substitution rate for HSV-1 is approximately 1.38×10(-7) subs/site/year. In conclusion, this study expands the previously described HSV-1 three clade phylogenetic structures to a minimum of six and shows that the clade structure also mirrors global human migrations. Given that HSV-1 has co-evolved with its host, sequencing HSV-1 isolated from various populations could serve as a surrogate biomarker to study human population structure and migration patterns.

Concepts: Virus, Population, Phylogenetic nomenclature, Human migration, Phylogenetics, Cladistics, Computational phylogenetics, Globalization