Discover the most talked about and latest scientific content & concepts.

Concept: Photovoltaic module


The recent stunning rise in power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) has triggered worldwide intense research. However, high PCE values have often been reached with poor stability at an illuminated area of typically less than 0.1 cm(2). We used heavily doped inorganic charge extraction layers in planar PSCs to achieve very rapid carrier extraction even with 10-20 nm thick layers avoiding pinholes and eliminating local structural defects over large areas. This robust inorganic nature allowed for the fabrication of PSCs with an aperture area >1 cm(2) showing a power conversion efficiency (PCE) >15% certified by an accredited photovoltaic calibration laboratory. Hysteresis in the current-voltage characteristics was eliminated; the PSCs were stable: >90% of the initial PCE remained after 1000 hours light soaking.

Concepts: Solar cell, Photovoltaics, Energy conversion, Energy conversion efficiency, Photovoltaic module, Robust statistics, P-n junction, Photovoltaic array


Organometal halide perovskite-based solar cells have recently realized large conversion efficiency over 15% showing great promise for a new large scale cost-competitive photovoltaic technology. Using impedance spectroscopy measurements we are able to separate the physical parameters of carrier transport and recombination in working devices of the two principal morphologies and compositions of perovskite solar cells, viz. compact thin film of CH3NH3PbI3-xClx and CH3NH3PbI3 infiltrated on nanostructured TiO2. The results show nearly identical spectral characteristics indicating a unique photovoltaic operating mechanism that provides long diffusion lengths (1 m). Carrier conductivity in both devices is closely matched, so that the most significant differences in performance are attributed to recombination rates. These results highlight the central role of the CH3NH3PbX3 semiconductor absorber in carrier collection and provide a new tool for improved optimization of perovskite solar cells. We report for the first time a measurement of the diffusion length in a nanostructured perovskite solar cell.

Concepts: Solar cell, Photovoltaics, Germanium, Photovoltaic module, Band gap, Photovoltaic array, Solar cells, Solar tracker


Using charge modulated electroabsorption spectroscopy (CMEAS), for the first time, the energy level alignment of a polymer:fullerene bulk heterojunction photovoltaic cell is directly measured. The charge-transfer excitons generated by the sub-bandgap optical pumping are coupled with the modulating electric field and introduce subtle changes in optical absorption in the sub-bandgap region. This minimum required energy for sub-bandgap charge genreation is defined as the effective bandgap.

Concepts: Photon, Light, Electromagnetic radiation, Semiconductor, Solar cell, Absorption, Photovoltaics, Photovoltaic module


Quantum dot sensitized solar cells (QDSSCs) present a promising technology for next generation photovoltaic cells, having exhibited a considerable leap in performance over the last few years. However, recombination processes occurring in parallel at the TiO(2)-QDs-electrolyte triple junction constitute one of the major limitations for further improvement of QDSSCs. Reaching higher conversion efficiencies necessitates gaining a better understanding of the mechanisms of charge recombination in these kinds of cells; this will essentially lead to the development of new solutions for inhibiting the described losses. In this study we have systematically examined the contribution of each interface formed at the triple junction to the recombination of the solar cell. We show that the recombination of electrons at the TiO(2)/QDs interface is as important as the recombination from TiO(2) and QDs to the electrolyte. By applying conformal MgO coating both above and below the QD surface, recombination rates were significantly reduced, and an improvement of more than 20% in cell efficiency was recorded.

Concepts: Photoelectric effect, Quantum dot, Cadmium, Solar cell, Photovoltaics, Photovoltaic module, Band gap, Solar cells


Power conversion efficiencies in excess of 7 % have been achieved with bulk heterojunction (BHJ)-type organic solar cells using two components: p- and n-doped materials. The energy level and absorption profile of the active layer can be tuned by introduction of an additional component. Careful design of the additional component is required to achieve optimal panchromatic absorption, suitable energy-level offset, balanced electron and hole mobility, and good light-harvesting efficiency. This article reviews the recent progress on ternary organic photovoltaic systems, including polymer/small molecule/functional fullerene, polymer/polymer/functional fullerene, small molecule/small molecule/functional fullerene, polymer/functional fullerene I/functional fullerene II, and polymer/quantum dot or metal/functional fullerene systems.

Concepts: Solar cell, Photovoltaics, Organic solar cell, Energy conversion, Photovoltaic module, Photovoltaic array, Organic electronics, Solar tracker


Organo-lead halide perovskites have attracted much attention for solar cell applications due to their unique optical and electrical properties. With either low-temperature solution processing or vacuum evaporation, the overall conversion efficiencies of perovskite solar cells with organic hole-transporting material were quickly improved to over 15% during the last 2 years. However, the organic hole-transporting materials used are normally quite expensive due to complicated synthetic procedure or high-purity requirement. Here, we demonstrate the application of an effective and cheap inorganic p-type hole-transporting material, copper thiocyanate, on lead halide perovskite-based devices. With low-temperature solution-process deposition method, a power conversion efficiency of 12.4% was achieved under full sun illumination. This work represents a well-defined cell configuration with optimized perovskite morphology by two times of lead iodide deposition, and opens the door for integration of a class of abundant and inexpensive material for photovoltaic application.

Concepts: Oxygen, Solar cell, Photovoltaics, Energy conversion, Energy conversion efficiency, Photovoltaic module, Photovoltaic array, Lead(II) nitrate


Recent advances in the use of organic-inorganic hybrid perovskites for optoelectronics have been rapid, with reported power conversion efficiencies of up to 22 per cent for perovskite solar cells. Improvements in stability have also enabled testing over a timescale of thousands of hours. However, large-scale deployment of such cells will also require the ability to produce large-area, uniformly high-quality perovskite films. A key challenge is to overcome the substantial reduction in power conversion efficiency when a small device is scaled up: a reduction from over 20 per cent to about 10 per cent is found when a common aperture area of about 0.1 square centimetres is increased to more than 25 square centimetres. Here we report a new deposition route for methyl ammonium lead halide perovskite films that does not rely on use of a common solvent or vacuum: rather, it relies on the rapid conversion of amine complex precursors to perovskite films, followed by a pressure application step. The deposited perovskite films were free of pin-holes and highly uniform. Importantly, the new deposition approach can be performed in air at low temperatures, facilitating fabrication of large-area perovskite devices. We reached a certified power conversion efficiency of 12.1 per cent with an aperture area of 36.1 square centimetres for a mesoporous TiO2-based perovskite solar module architecture.

Concepts: Nitrogen, Solar cell, Photovoltaics, Energy conversion, Energy conversion efficiency, Photovoltaic module, Amorphous silicon, Photovoltaic array


Light-driven degradation of photoactive molecules could be one of the major obstacles to stable long term operation of organic dye-based solar light harvesting devices. One solution to this problem may be mimicking the regeneration functionality of a plant leaf. We report an organic dye photovoltaic system that has been endowed with such microfluidic regeneration functionality. A hydrogel medium with embedded channels allows rapid and uniform supply of photoactive reagents by a convection-diffusion mechanism. A washing-activation cycle enables reliable replacement of the organic component in a dye-sensitized photovoltaic system. Repetitive restoration of photovoltaic performance after intensive device degradation is demonstrated.

Concepts: Chemistry, Device, Photovoltaics, Term, Dye, Major, Photovoltaic module, Information appliance


Acoustic vibrations are shown to enhance the photovoltaic efficiency of a P3HT/ZnO nanorod solar cell by up to 45%, correlated to a three-fold increase in charge carrier lifetime. This is assigned to the generation of piezoelectric dipoles in the ZnO nanorods, indicating that the efficiency of solar cells may be enhanced in the presence of ambient vibrations by the use of piezoelectric materials.

Concepts: Solar cell, Photovoltaics, Dye-sensitized solar cell, Photovoltaic module, Band gap, Photovoltaic array, Energy harvesting, Solar tracker


A combination of declining costs and policy measures motivated by greenhouse gas (GHG) emissions reduction and energy security have driven rapid growth in the global installed capacity of solar photovoltaics (PV). This paper develops a number of unique datasets, namely: calculation of distribution of global capacity factor for PV deployment; meta-analysis of energy consumption in PV system manufacture and deployment; and documentation of reduction in energetic costs of PV system production. These data are used as input into a new net energy analysis of the global PV industry, as opposed to devise level analysis. In addition, the paper introduces a new concept: a model tracking energetic costs of manufacturing and installing PV systems, including balance of system (BOS) components. The model is used to forecast energy requirements to scale up the PV industry and determine the energy balance of the global PV industry to 2020. Results suggest that the industry was a net consumer of electricity as recently as 2010. However, there is a >50% that in 2012 the PV industry is a net electricity provider and will “pay back” the energy required for its early growth before 2020. Further reducing energetic costs of PV deployment will enable more rapid growth of the PV industry. There is also great potential to increase the capacity factor of PV deployment. These conclusions have a number of implications for R&D and deployment, including: monitoring of the energy embodied within PV systems; designing more efficient and durable systems and; deploying PV systems in locations that will achieve high capacity factors.

Concepts: Energy, Mass, Solar cell, Photovoltaics, Renewable energy, Solar energy, Photovoltaic module, Capacity factor