Discover the most talked about and latest scientific content & concepts.

Concept: Phosphatase


Ki-67 and RepoMan have key roles during mitotic exit. Previously, we showed that Ki-67 organizes the mitotic chromosome periphery and recruits protein phosphatase 1 (PP1) to chromatin at anaphase onset, in a similar manner as RepoMan (Booth et al., 2014). Here we show how Ki-67 and RepoMan form mitotic exit phosphatases by recruiting PP1, how they distinguish between distinct PP1 isoforms and how the assembly of these two holoenzymes are dynamically regulated by Aurora B kinase during mitosis. Unexpectedly, our data also reveal that Ki-67 and RepoMan bind PP1 using an identical, yet novel mechanism, interacting with a PP1 pocket that is engaged only by these two PP1 regulators. These findings not only show how two distinct mitotic exit phosphatases are recruited to their substrates, but also provide immediate opportunities for the design of novel cancer therapeutics that selectively target the Ki-67:PP1 and RepoMan:PP1 holoenzymes.

Concepts: Cell nucleus, Enzyme, Chromosome, Cell cycle, Kinase, Mitosis, Chromatin, Phosphatase


The Ca2+/calmodulin-dependent protein phosphatase calcineurin orchestrates sexual reproduction, stress responses, and virulence via branched downstream pathways in the opportunistic human fungal pathogen, Cryptococcus neoformans The calcineurin binding protein Cbp1, the calcineurin temperature suppressor Cts1, the calcineurin responsive zinc finger transcription factor Crz1, and the calcineurin targets Pbp1, Tif3, and Puf4 all function downstream of calcineurin to orchestrate distinct cellular processes. To elucidate how the calcineurin pathway regulatory network governs unisexual reproduction, stress responses, and virulence, we have analyzed the self-filamentous C. deneoformans strain, XL280α, and generated double mutants of these calcineurin downstream genes. We demonstrated that calcineurin governs unisexual reproduction at different sexual developmental stages, in which the initiation of the yeast-hyphal morphological transition is independent of Crz1, whereas the sporulation process is dependent on Crz1. Calcineurin-dependent unisexual reproduction is independent of the pheromone response pathway. Crz1 synergistically interacts with different calcineurin downstream targets in responding to ER, high calcium, and cell wall stresses. We observed a wide-spread synergy suggesting that these proteins function in complex branched pathways downstream of calcineurin with some functional redundancy, which may allow efficient signaling network rewiring within the pathway for prompt adaptation to changing environments. Finally, we showed that deletion of PBP1 or TIF3 in the cna1∆ mutant background conferred a modest level of growth tolerance at 37°C, but the cna1∆ pbp1∆ and cna1∆ tif3∆ double mutants were both avirulent, suggesting that calcineurin may control virulence via mechanisms beyond thermotolerance.

Concepts: DNA, Protein, Protein structure, Reproduction, Enzyme, Cryptococcus neoformans, Phosphatase, Calcineurin


Calcineurin is a ubiquitously expressed calcium-dependent phosphatase that is inhibited by the immunosuppressant drugs cyclosporine and tacrolimus. Measuring calcineurin activity in transplant patients has been complicated by a lack of consistent correlation between drug level and enzyme activity, particularly with chronic use. Data from mice lacking the CnAα or CnAβ isoform of the catalytic subunit of calcineurin demonstrate that loss of CnAβ results in immunosuppression, whereas loss of CnAα does not. As such, methods to examine activity of the CnAβ isoform may be more clinically relevant than nonspecific assays.

Concepts: Immune system, Molecular biology, Enzyme, Immunosuppression, Immunosuppressive drug, Recreational drug use, Phosphatase, Calcineurin


Okadaic acid (OKA) is one of the main polyether toxins produced by marine microalgae which causes diarrhetic shellfish poisoning. It is a selective and potent inhibitor of serine/threonine phosphatases 1 and 2A induces hyperphosphorylation of tau in vitro and in vivo. The reduced activity of phosphatases like, protein phosphatase 2A (PP2A) has been implicated in the brain of Alzheimer’s disease (AD) patients. It is reported that AD is a complex multifactorial neurodegenerative disorder and hyperphosphorylated tau proteins is a major pathological hallmark of AD. The molecular pathogenesis of AD includes an extracellular deposition of beta amyloid (Aβ), accumulation of intracellular neurofibrillary tangles (NFT), GSK3β activation, oxidative stress, altered neurotransmitter and inflammatory cascades. Several lines of evidence suggested that the microinfusion of OKA into the rat brain causes cognitive deficiency, NFTs-like pathological changes and oxidative stress as seen in AD pathology via tau hyperphosphorylation caused by inhibition of protein phosphatases. So, communal data and information inferred that OKA induces neurodegeneration along with tau hyperphosphorylation; GSK3β activation, oxidative stress, neuroinflammation and neurotoxicity which is a characteristic feature of AD pathology. Through this collected evidence, it is suggested that OKA induced neurotoxicity may be a novel tool to study Alzheimer’s disease pathology and helpful in development of new therapeutic approach.

Concepts: Alzheimer's disease, Protein structure, Enzyme, Neurology, Neurodegenerative disorders, Phosphatase


Targeted cancer therapies, which act on specific cancer-associated molecular targets, are predominantly inhibitors of oncogenic kinases. While these drugs have achieved some clinical success, the inactivation of kinase signaling via stimulation of endogenous phosphatases has received minimal attention as an alternative targeted approach. Here, we have demonstrated that activation of the tumor suppressor protein phosphatase 2A (PP2A), a negative regulator of multiple oncogenic signaling proteins, is a promising therapeutic approach for the treatment of cancers. Our group previously developed a series of orally bioavailable small molecule activators of PP2A, termed SMAPs. We now report that SMAP treatment inhibited the growth of KRAS-mutant lung cancers in mouse xenografts and transgenic models. Mechanistically, we found that SMAPs act by binding to the PP2A Aα scaffold subunit to drive conformational changes in PP2A. These results show that PP2A can be activated in cancer cells to inhibit proliferation. Our strategy of reactivating endogenous PP2A may be applicable to the treatment of other diseases and represents an advancement toward the development of small molecule activators of tumor suppressor proteins.

Concepts: Cancer, Oncology, Enzyme, Lung cancer, Kinase, Oncogene, Tumor suppressor gene, Phosphatase


We provide evidence that AtDBP1 promotes flowering by regulating the transcript levels of several important integrators and floral meristem identity genes, including FLC, CO, SOC1, LFY, FT and FD. DNA-binding protein phosphatases (DBP) which exhibit both sequence specific DNA-binding and protein phosphatase 2C activities are important regulators that are involved in both the transcriptional and post-translational regulations. DBP factors are known to mediate susceptibility to potyviruses; however, whether they are involved in other processes is still unclear. In this study, under both long day (LD) and short day conditions, AtDBP1 overexpressing plants displayed early flowering, while the knock out mutants, atdbp1, exhibited a delay in flowering relative to the wild-type plants; both the overexpressing lines and atdbp1 mutants remained photoperiodic sensitive, indicating that AtDBP1 was involved in the autonomous pathway. AtDBP1 does not respond to vernalization at transcript level, and both AtDBP1 overexpressing plants and atdbp1 mutants remain responsive to vernalization, indicating that AtDBP1 may not be directly involved in vernalization. Real-time PCR analysis showed that AtDBP1 can suppress FLOWERING LOCUC C (FLC) expression, a key integrator of the autonomous and vernalization pathways, and enhance the expression levels of CONSTANS and FLOWERING LOCUC T, key regulators of the LD pathway. Furthermore, expression of floral meristem identity genes including SUPPRESSOR OF OVEREXPRESSION OF CO 1, LEAFY and FD was also promoted in AtDBP1overexpressing plants. AtDBP1 transcription can be detected in root, leaf, stem, flower and silique. AtDBP1-GFP and YFP-AtDBP1 fusion protein were localized in the cytosol and nucleus. Our results provide the evidence demonstrating the effective role of AtDBP1 for flowering time regulation and report a novel function of DBP factors in planta besides in plant defense.

Concepts: DNA, Protein, Gene, Gene expression, Transcription, Molecular biology, Enzyme, Phosphatase


Dynamic assembly/disassembly of signaling complexes are crucial for cellular functions. Specialized latency and activation chaperones control the biogenesis of protein phosphatase 2A (PP2A) holoenzymes that contain a common scaffold and catalytic subunits and a variable regulatory subunit. Here we show that the butterfly-shaped TIPRL (TOR signaling pathway regulator) makes highly integrative multibranching contacts with the PP2A catalytic subunit, selective for the unmethylated tail and perturbing/inactivating the phosphatase active site. TIPRL also makes unusual wobble contacts with the scaffold subunit, allowing TIPRL, but not the overlapping regulatory subunits, to tolerate disease-associated PP2A mutations, resulting in reduced holoenzyme assembly and enhanced inactivation of mutant PP2A. Strikingly, TIPRL and the latency chaperone, α4, coordinate to disassemble active holoenzymes into latent PP2A, strictly controlled by methylation. Our study reveals a mechanism for methylation-responsive inactivation and holoenzyme disassembly, illustrating the complexity of regulation/signaling, dynamic complex disassembly, and disease mutations in cancer and intellectual disability.

Concepts: Protein, Signal transduction, Enzyme, Catalysis, Protein folding, Kinase, Protein subunit, Phosphatase


Identification and functional validation of oncogenic drivers are essential steps toward advancing cancer precision medicine. Here, we have presented a comprehensive analysis of the somatic genomic landscape of the widely used BRAFV600E- and NRASQ61K-driven mouse models of melanoma. By integrating the data with publically available genomic, epigenomic, and transcriptomic information from human clinical samples, we confirmed the importance of several genes and pathways previously implicated in human melanoma, including the tumor-suppressor genes phosphatase and tensin homolog (PTEN), cyclin dependent kinase inhibitor 2A (CDKN2A), LKB1, and others. Importantly, this approach also identified additional putative melanoma drivers with prognostic and therapeutic relevance. Surprisingly, one of these genes encodes the tyrosine kinase FES. Whereas FES is highly expressed in normal human melanocytes, FES expression is strongly decreased in over 30% of human melanomas. This downregulation correlates with poor overall survival. Correspondingly, engineered deletion of Fes accelerated tumor progression in a BRAFV600E-driven mouse model of melanoma. Together, these data implicate FES as a driver of melanoma progression and demonstrate the potential of cross-species oncogenomic approaches combined with mouse modeling to uncover impactful mutations and oncogenic driver alleles with clinical importance in the treatment of human cancer.

Concepts: Gene, Genetics, Gene expression, Cancer, Protein kinase, Melanoma, Melanin, Phosphatase


Recent evidence suggests that inhibition of protein phosphatase 2A (PP2A) tumor suppressor activity via the SET oncoprotein contributes to the pathogenesis of various cancers. Here we demonstrate that both SET and c-MYC expression are frequently elevated in T-ALL cell lines and primary samples compared to healthy T cells. Treatment of T-ALL cells with the SET antagonist OP449 restored the activity of PP2A and reduced SET interaction with the PP2A catalytic subunit, resulting in a decrease in cell viability and c-MYC expression in a dose-dependent manner. Since a tight balance between phosphatases and kinases is required for the growth of both normal and malignant cells, we sought to identify a kinase inhibitor that would synergize with SET antagonism. We tested various T-ALL cell lines against a small-molecule inhibitor screen of 66 compounds targeting two-thirds of the tyrosine kinome and found that combined treatment of T-ALL cells with dovitinib, an orally active multi-targeted small-molecule receptor tyrosine kinase inhibitor, and OP449 synergistically reduced the viability of all tested T-ALL cell lines. Mechanistically, combined treatment with OP449 and dovitinib decreased total and phospho c-MYC levels and reduced ERK1/2, AKT, and p70S6 kinase activity in both NOTCH-dependent and independent T-ALL cell lines. Overall, these results suggest that combined targeting of tyrosine kinases and activation of serine/threonine phosphatases may offer novel therapeutic strategies for the treatment of T-ALL.

Concepts: Protein, Cancer, Signal transduction, Enzyme, Kinase, Protein kinase, Acute lymphoblastic leukemia, Phosphatase


Serine/threonine protein phosphatase 5 (PP5) is ubiquitously expressed in eukaryotic cells; however, its function in cardiomyocytes is unknown. Under basal conditions, PP5 is autoinhibited, but enzymatic activity rises upon binding of specific factors, such as the chaperone Hsp90. Here we show that PP5 binds and dephosphorylates the elastic N2B-unique sequence (N2Bus) of titin in cardiomyocytes. Using various binding and phosphorylation tests, cell-culture manipulation, and transgenic mouse hearts, we demonstrate that PP5 associates with N2Bus in vitro and in sarcomeres and is antagonistic to several protein kinases, which phosphorylate N2Bus and lower titin-based passive tension. PP5 is pathologically elevated and likely contributes to hypo-phosphorylation of N2Bus in failing human hearts. Furthermore, Hsp90-activated PP5 interacts with components of a sarcomeric, N2Bus-associated, mechanosensor complex, and blocks mitogen-activated protein-kinase signaling in this complex. Our work establishes PP5 as a compartmentalized, well-controlled phosphatase in cardiomyocytes, which regulates titin properties and kinase signaling at the myofilaments.

Concepts: Protein, Gene expression, Signal transduction, Adenosine triphosphate, Enzyme, Kinase, Phosphorylation, Phosphatase