Discover the most talked about and latest scientific content & concepts.

Concept: Phoenix


Trapping systems for the red palm weevil, Rhynchophorus ferrugineus Olivier, rely on the use of natural plant odor sources to boost the attractiveness of the aggregation pheromone. The identification of the key odorants involved in attraction is essential to develop a synthetic pheromone synergist to replace the non-standardized use of plant material in traps. Canary Islands date palms (Phoenix canariensis) have become preferred hosts for R. ferrugineus in Europe; thus, the volatile profile of different P. canariensis plant materials, including healthy and infested tissues, is investigated in the present work by means of solid phase micro-extraction (SPME-GC/MS), aimed to identify pheromone synergists. The electrophysiological (EAG) response of the compounds identified was recorded, as well as the preliminary field response of several EAG-active compounds. The so called ‘palm esters’ (ethyl acetate, ethyl propionate, ethyl butyrate and propyl butyrate) elicit the strongest EAG responses but performed poorly in field. Mixtures of esters and alcohols give evidences of better performance, but release rates need further optimization.

Concepts: Canary Islands, Arecaceae, Acetic acid, Ester, Phoenix, Flavors, Ethyl butyrate


Serenomyces is a genus belonging to the family Phaeochoraceae, which is known to occur only in association with the plant family Arecaecea (palms). It is presumed to be one of the causes of a leaf disease referred to as either rachis blight or petiole blight, depending on the palm species affected. The fungus is not readily observed, with few reports in the literature; it cannot be readily isolated from tissue, with only one known instance of it being cultured on artificial media and has no DNA sequences deposited in GenBank. Over an 8 y period, leaves symptomatic for rachis or petiole blight were obtained from Florida and South Carolina, USA. The fungus was induced to produce ascospores, and single-spore isolates were obtained in culture and, in some instances, induced to produce ascospores in culture. Based on ascospores size and ITS sequencing, Serenomyces from Phoenix canariensis and P. dactylifera form one group, Serenomyces from Thrinax radiate form a second group and Serenomyces from Sabal palmetto form a third. All three groups are most similar morphologically to Serenomyces phoenicis. Due to the observed instability of Serenomyces in culture, we have suggestions regarding the storage of this fungus.

Concepts: DNA, Arecaceae, Leaf, Plant morphology, Phoenix, South Carolina, Sabal, Sabal palmetto


Date palm pollen (DPP) is the male reproductive dust of palm flowers used as dietary supplement especially as aphrodisiac and fertility enhancer in both women and men from ancient times. Although there are few clinical trials evaluating the beneficial effects of DPP in humans, various experimental studies have been conducted on the reproductive effects of DPP. Among the compounds isolated from DPP are amino acids, fatty acids, flavonoids, saponins, and estroles. The present review summarizes comprehensive information concerning the phytochemistry and pharmacological activities of DPP and its application in fertility disorders.

Concepts: Human, Nutrition, The Canon of Medicine, Carboxylic acid, Phoenix, Phoenix dactylifera


The date palm scale (DPS) Parlatoria blanchardi is a serious pest due to the damage it inflicts on its host tree (Phoenix dactylifera). To develop an effective control against DPS in arid regions, it is essential to know its bio-ecology including population dynamics and climatic factors influencing the duration and timing of life history and also the densities of different phenological stages (crawlers, first and second instars nymphs, adult males, and adult females). Monitoring of biological cycle and population dynamics of the pest were achieved through weekly counts of DPS densities on leaflets sampled at different position of date palm trees in an oasis of Ouargla region (Algerian Sahara Desert). Within this hyper-arid region, DPS established four generations per year, the most important was the spring generation. Two overlapping generations occurred in spring-early summer and two in autumn-early winter; these two pairs of generations were interspersed by two phases of high-mortality rates, the first corresponds to winter cold and the second refers to the extreme heat of summer. Statistical analysis of the effects of the studied climatic conditions (minimum, maximum and mean temperatures, precipitation, humidity, wind, rain days, and climatic indices) on the DPS densities at different phenological stages showed great variability from one stage to another. Among these, adult females were the most affected by climate factors. For the total DPS population, high values of minimum temperatures negatively affected population density, while high maximum temperatures, hygrometry, and De Martonne aridity index showed a positive influence.

Concepts: Water, Climate, Arid, Phoenix, Phoenix dactylifera, Rain shadow, Deserts and xeric shrublands, Aridification


The objective of the present study is to determine the effect of light source on enhancement of shoot multiplication, phytochemicals, as well as, antioxidant enzyme activities of in vitro cultures of date palm cv. Alshakr. In vitro-grown buds were cultured on Murashige and Skoog (MS) medium and incubated under a conventional white fluorescent light (control), and combinations of red + blue light emitting diode (18:2) (CRB-LED). Results revealed that the treatment of CRB-LED showed a significant increase in the number of shoots compared with the white florescent light. Total soluble carbohydrate “TSCH” (7.10 mg g(-1) DW.), starch (1.63 mg g(-1) DW.) and free amino acids (2.90 mg g(-1) DW.) were significantly higher in CRB-LED (p < 0.05). Additionally, CRB-LED induced a higher peroxidase activity (25.50 U ml(-1)) compared with the white fluorescent light treatment (19.74 U ml(-1)) as control treatment. Potassium, magnesium and sodium contents in (3.62, 13.99 and 2.76 mg g(-1) DW.) were increased in in vitro shoots under CRB-LED treatment in comparison with fluorescent light (p < 0.05). Protein profile showed the appearance of newly bands with the molecular weight of 38 and 60 kDa at the treatment CRB-LED compared with control treatment. Our results demonstrate the positive effects of CRB-LED light during the course of date palm tissue cultures.

Concepts: Fluorescence, Amino acid, Fluorescent lamp, Light-emitting diode, Diode, Light therapy, Phoenix, Black light


The 1976 Viking Labeled Release (LR) experiment was positive for extant microbial life on the surface of Mars. Experiments on both Viking landers, 4000 miles apart, yielded similar, repeatable, positive responses. While the authors eventually concluded that the experiment detected martian life, this was and remains a highly controversial conclusion. Many believe that the martian environment is inimical to life and the LR responses were nonbiological, attributed to an as-yet-unidentified oxidant (or oxidants) in the martian soil. Unfortunately, no further metabolic experiments have been conducted on Mars. Instead, follow-on missions have sought to define the martian environment, mostly searching for signs of water. These missions have collected considerable data regarding Mars as a habitat, both past and present. The purpose of this article is to consider recent findings about martian water, methane, and organics that impact the case for extant life on Mars. Further, the biological explanation of the LR and recent nonbiological hypotheses are evaluated. It is concluded that extant life is a strong possibility, that abiotic interpretations of the LR data are not conclusive, and that, even setting our conclusion aside, biology should still be considered as an explanation for the LR experiment. Because of possible contamination of Mars by terrestrial microbes after Viking, we note that the LR data are the only data we will ever have on biologically pristine martian samples.

Concepts: Biology, Life, Microbiology, Mars, Phoenix, Life on Mars, Extraterrestrial life, Viking program


Hepatocellular carcinoma (HCC) accounts for major cancer-related deaths despite current advanced therapies. Treatment and prognosis of HCC is better in patients with preserved liver function. Many natural products including ajwa dates (Phoenix dactylifera L.), are claimed to have hepatoprotective and HCC inhibitory effects, but most lack scientific validation. To prove our hypothesis, we attempted to evaluate the HCC inhibitory effects, and other beneficial properties of the aqueous extract of ajwa dates (ADE) in a rat model of diethylnitrosamine (DEN) induced liver cancer.

Concepts: Cancer, Cirrhosis, Hepatocellular carcinoma, Hepatology, Hepatitis C, Phoenix, Phoenix dactylifera


Date palm (Phoenix dactylifera L.) is a cultivated woody plant species with agricultural and economic importance. Here we report a genome assembly for an elite variety (Khalas), which is 605.4 Mb in size and covers >90% of the genome (~671 Mb) and >96% of its genes (~41,660 genes). Genomic sequence analysis demonstrates that P. dactylifera experienced a clear genome-wide duplication after either ancient whole genome duplications or massive segmental duplications. Genetic diversity analysis indicates that its stress resistance and sugar metabolism-related genes tend to be enriched in the chromosomal regions where the density of single-nucleotide polymorphisms is relatively low. Using transcriptomic data, we also illustrate the date palm’s unique sugar metabolism that underlies fruit development and ripening. Our large-scale genomic and transcriptomic data pave the way for further genomic studies not only on P. dactylifera but also other Arecaceae plants.

Concepts: DNA, Gene, Genetics, Organism, Virus, Genome, Genomics, Phoenix


Investigating crop origins is a priority to understand the evolution of plants under domestication, develop strategies for conservation and valorization of agrobiodiversity and acquire fundamental knowledge for cultivar improvement. The date palm (Phoenix dactylifera L.) belongs to the genus Phoenix, which comprises 14 species morphologically very close, sometimes hardly distinguishable. It has been cultivated for millennia in the Middle East and in North Africa and constitutes the keystone of oasis agriculture. Yet, its origins remain poorly understood as no wild populations are identified. Uncultivated populations have been described but they might represent feral, i.e. formerly cultivated, abandoned forms rather than truly wild populations. In this context, this study based on morphometrics applied to 1625 Phoenix seeds aims to (1) differentiate Phoenix species and (2) depict the domestication syndrome observed in cultivated date palm seeds using other Phoenix species as a “wild” reference. This will help discriminate truly wild from feral forms, thus providing new insights into the evolutionary history of this species. Seed size was evaluated using four parameters: length, width, thickness and dorsal view surface. Seed shape was quantified using outline analyses based on the Elliptic Fourier Transform method. The size and shape of seeds allowed an accurate differentiation of Phoenix species. The cultivated date palm shows distinctive size and shape features, compared to other Phoenix species: seeds are longer and elongated. This morphological shift may be interpreted as a domestication syndrome, resulting from the long-term history of cultivation, selection and human-mediated dispersion. Based on seed attributes, some uncultivated date palms from Oman may be identified as wild. This opens new prospects regarding the possible existence and characterization of relict wild populations and consequently for the understanding of the date palm origins. Finally, we here describe a pipeline for the identification of the domestication syndrome in seeds that could be used in other crops.

Concepts: Agriculture, Phoenix, Phoenix dactylifera, Oman


Date palms (Phoenix dactylifera) are the most significant perennial crop in arid regions of the Middle East and North Africa. Here, we present a comprehensive catalogue of approximately seven million single nucleotide polymorphisms in date palms based on whole genome re-sequencing of a collection of 62 cultivars. Population structure analysis indicates a major genetic divide between North Africa and the Middle East/South Asian date palms, with evidence of admixture in cultivars from Egypt and Sudan. Genome-wide scans for selection suggest at least 56 genomic regions associated with selective sweeps that may underlie geographic adaptation. We report candidate mutations for trait variation, including nonsense polymorphisms and presence/absence variation in gene content in pathways for key agronomic traits. We also identify a copia-like retrotransposon insertion polymorphism in the R2R3 myb-like orthologue of the oil palm virescens gene associated with fruit colour variation. This analysis documents patterns of post-domestication diversification and provides a genomic resource for this economically important perennial tree crop.

Concepts: DNA, Genetics, Mutation, Natural selection, North Africa, Middle East, Egypt, Phoenix